1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Число оборотов двигателя что это

Охрана Труда

Расчётные формулы электродвигателей

Расчётные формулы электродвигателей

Ток в статоре трёхфазного электродвигателя при номинальной нагрузке, а

где Р н — номинальная мощность электродвигателя, квт, η — к. п. д. электродвигателя, cos φ— коэффициент мощности, U — напряжение на зажимах электродвигателя, в.

Синхронное число оборотов электродвигателя

где р —число пар полюсов обмотки статора электродвигателя, f — частота.

Номинальное число оборотов асинхронного электродвигателя

где s — скольжение асинхронного электродвигателя, % .

Скольжение асинхронного электродвигателя, %

Номинальный момент вращения электродвигателя, кГ·м

где D — диаметр шкива, м; F — усилие, передаваемое ремнём, кГ.

Количество тепла, выделяемого электродвигателем в 1 сек, ккал/сек

где квт — сумма потерь в электродвигателе.

Окружная скорость (шкива, вала, коллектора, ротора), м/сек.

где D — диаметр соответствующего элемента машины, м.

Коэффициент полезного действия (к. п. д.) асинхронного электро­двигателя при регулировании скорости реостатом в цепи ротора

где п рег — пониженное число оборотов двигателя в минуту;

η рег — к. п. д. при пониженном числе оборотов.

Соотношения между единицами измерения работы

Соотношения между единицами измерения мощности

Что важнее: Мощность или крутящий момент?

Понятие крутящего момента двигателя

КМ можно представить как показатель силы вращения коленвала. Перед тем, как в нем разобраться, начнем с мощности и количества оборотов, а также разберем, почему все эти параметры взаимосвязаны. Первая характеристика подразумевает работу, которая производится за временную единицу. Под работой подразумевается преобразование энергии сгорания топлива в кинетическую. Вторая характеристика говорит о количестве оборотов вала в минуту. Ну, а крутящий момент можно назвать производной от этих характеристик величиной.


Учитывая принятую систему измерения силы в ньютонах (Н), а длины в метрах (м), крутящий момент измеряется в «Нм», поскольку речь о силе, прикладываемой к поршню и длине плеча коленчатого вала. Чем больше эта величина, тем выше динамика авто, соответственно, тем быстрее оно развивает заявленное количество «лошадок».



Что такое крутящий момент двигателя

Несколько по-иному обстоит ситуация с пониманием крутящего момента, но, зная основные законы физики и базовое устройство силового агрегата, можно без труда прояснить это понятие. Крутящий момент двигателя – это качественный показатель, характеризующий силу вращения коленчатого вала. Этот параметр рассчитывается как произведение силы, приложенной к поршню, на плечо (расстояние от центральной оси вращения коленчатого вала до места крепления поршня (шатунной шейки)). Крутящий момент измеряется в ньютонах на метр (Нм).

Крутящий момент на коленчатом валу, как следует из вышеприведенной формулы, зависит от силы давления газов на поршень, а также от рабочего объема двигателя и степени сжатия топливной смеси в цилиндрах. Кстати сказать, значительно более высокий крутящий момент дизельных двигателей, по сравнению с аналогичными по объему бензиновыми моторами, объясняется чрезвычайно высокой степенью сжатия смеси дизельного топлива и воздуха в камерах сгорания (бензиновые — примерно 10:1, дизельные – около 20:1).

Высокий крутящий момент двигателя обеспечивает автомобилю отличную динамику разгона уже при низких оборотах вращения коленчатого вала, существенно увеличивает тяговые характеристики силового агрегата – повышает грузоподъемность авто и его проходимость.

Максимальное значение крутящего момента двигатель внутреннего сгорания достигает при определенных оборотах. У бензиновых моторов этот показатель более высокий, чем у «дизелей».

От чего зависит величина крутящего момента двигателя?

  • радиус кривошипа коленвала;
  • давление, создаваемое в цилиндре;
  • поршневая площадь;
  • объем.

По большей части, величина будет зависеть от объема ДВС: с его увеличением будет расти сила, которая воздействует на поршень. Конечно, немаловажную роль играет и радиус кривошипа, но учитывая конструктивные особенности современных двигателей, варьирование этой величины возможно только в небольших пределах. Также стоит сказать о зависимости от давления: чем оно больше, тем больше прикладываемая сила.

Формула расчета крутящего момента

Сначала посмотрим на формулу расчета мощности:

Р(мощность, кВт) = М(крутящий момент, Нм) х n (число оборотов в минуту) / 9550.

Расчет КМ выглядит следующим образом:

М(крутящий момент, Нм) = Р(мощность, кВт) x 9550 / n (число оборотов в минуту).

Дабы рассчитать нужные величины и не запутаться, достаточно воспользоваться конвертером, который доступен на многих автолюбительских сайтах.

Как измеряется крутящий момент?

Для этого достаточно взглянуть на техническую документацию своего авто. Но реальные измерения также доступны: необходимо использовать специальные датчики. Они позволят провести статические и динамические измерения.


Измерение заключается в создании ситуации, где двигатель набирает максимальные обороты, затем тормозится: в процессе создается график, демонстрирующий максимальный момент мотора в момент нажатия на тормоз. Сначала показатель будет небольшим, затем будет наблюдаться рост, достижение пика и падение.

СТО должны оснащаться профессиональными тензометрами: все измерения обрабатывает специальное ПО, а результаты отображаются в виде графиков. Основная сложность в измерении КМ – достичь высокой точности показаний. Устаревшие контактные, светотехнические или индукционные тензометры не обеспечивали должной эффективности, поэтому в настоящий момент используются измерители в виде компактного передатчика, закрепляемого на вал: он передает данные на прибор-приемник, предоставляющий данные, не нуждающиеся в обработке.

Мощность или крутящий момент – что важнее?

Для решения этой дилеммы необходимо понять несколько фактов:

  • мощность имеет линейную зависимость от частоты оборотов коленвала: быстрее вращение – больше показатель;
  • мощность – производная КМ;
  • до определенного значения рост КМ зависим от числа оборотов: быстрее вращение – выше КМ. Но преодолев пиковое значение, он снижается.

Отсюда можно прийти к выводу, что крутящий момент – приоритетный параметр, характеризующий возможности мотора. В то же время, нельзя пренебрегать мощностью: это значит, что производители автомобилей должны настроить работу агрегата таким образом, чтобы соблюдался баланс этих величин.

На что влияет крутящий момент двигателя

Если производить аналогию с человеческим организмом, то можно условно определить, что крутящий момент — это аналог силы, а мощность — это аналог выносливости. Именно от мощности двигателя внутреннего сгорания в конечном итоге зависит то, какую максимальную скорость может развить автомобиль, а от крутящего момента — то, как быстро сможет он это сделать. Именно поэтому далеко не все мощные автомобили имеют хорошую динамику разгона, и далеко не все, у которых она находится на высоком уровне, располагают очень мощными моторами.

Опытные автомобилисты отлично знают, что лучше всего выбирать для себя автомобиль с таким двигателем, показатель крутящего момента которого при работе на тех оборотах, на которых он обычно функционирует, является наилучшим. Дело в том, что это позволяет им использовать потенциал мощности ДВС в максимальной степени.

Следует заметить, что производители двигателей внутреннего сгорания всячески стремятся увеличить их крутящие моменты, причем во всем диапазоне работы моторов. Чаще всего пытаются достичь этого (и, кстати говоря, достаточно успешно) с помощью турбонаддува, управляемых фаз газораспределения (это оптимизирует процесс сгорания топливной смеси), повышения степени сжатия, использованием особых конструкций впускного коллектора и целым рядом других способов.

Рекомендуем: Таблица признаков и причин неисправности АКПП

Как можно увеличить крутящий момент двигателя?

  1. Смена коленчатого вала. К недостатка метода можно отнести тот факт, что это редкая для многих марок авто деталь: часто ее делают на заказ. Кроме того, это снизит долговечность двигателя.
  2. Расточка цилиндров. Более популярный метод, основанный на увеличении объема цилиндра. Метод доступен в большинстве автосервисных мастерских.
  3. Настройка карбюратора. Зачастую используется в дополнение к расточке.
  4. Увеличение турбонаддува. Доступно в моделях с турбированным двигателем. Тем не менее, снимая ограничения в блоке, который отвечает за управление компрессором – достаточно опасный способ, снижающий запас нагрузок в моторе. Тем, кто на него решается, также приходится прибегать к увеличению камеры сгорания, улучшению охлаждения, регулировке впускного клапана и смене распредвала, коленвала и поршней.
  5. Изменение газодинамики. Еще один метод, который по плечу только профессионалам. К тому же, убирая ограничения можно столкнуться не только с выросшей динамикой, а и с ухудшением сцепления.
  6. Использование масляного фильтра. Простой способ, снижающий засорение двигателя и продлевающий срок эксплуатации его запчастей.
Читать еще:  Двигатель 1zz как подтянуть цепь


Как видно, мотор – это сложный агрегат. Он уже рассчитан с использованием сложных инженерных формул и технологий, а значит, увеличение характеристики крутящего момента нежелательно. Если желание все же есть, стоит обратить внимание на два первых пункта. Можно, конечно, попытаться устранить заводские дефекты: убрать в камерах сгорания непродуваемые зоны и убрать в стыках заостренные углы, а также, неровности на клапанах. Но придется доверить эти операции специалистам своего дела.

Отдельно стоит сказать о так называемых усилителях КМ: их принцип основан на отборе мощности уменьшением оборотов, что не лучшим способом сказывается на долговечности конструкции. Подобные решения не увеличивают КМ, а позволяют его плавно менять на постоянных оборотах.

Что такое крутящий момент

Крутящий момент представляет собой качественный показатель, выражающий силу вращения коленвала, и рассчитывается произведением силы, давящей на поршень, на плечо (расстояние между центром вращения оси коленчатого вала до места крепления поршня к шатуну). Измеряется в количестве ньютонов на метр (Нм).

Рекомендуем: Устранение неисправности указателя топлива

Сила крутящего момента зависит от давления на поршень при сгорании газов, рабочего объема камеры сгорания и двигателя в целом, степени сжатия горючей смеси в камере сгорания.

Традиционно более высокий крутящий момент у дизелей, это объясняется степенью сжатия, превосходящей бензиновые двигатели практически вдвое.

Сильный крутящий момент дает автомобилю повышенную динамику набора скорости даже при низких оборотах, и заметно повышает тяговые свойства двигателя. Максимальных значений данная характеристика достигает при определенной частоте вращения коленвала, причем у дизелей этот показатель ниже, чем у бензиновых.

Какому двигателю отдать предпочтение?

В настоящий момент к привычным ДВС на дизельном топливе или бензине добавились еще и электродвигатели. Во всех этих конструкциях крутящий момент двигателя может кардинально отличаться.

Бензиновый двигатель

Действие основано на впрыске и формировании воздушно-топливной смеси с последующим возгоранием от искры свечей зажигания. Процесс происходит при температуре в 500 градусов, а коэффициент сжатия находится в районе 10 единиц.

Дизельный двигатель

Здесь коэффициент сжатия достигает уже 25 единиц, а температура составляет 900 градусов. При таких условиях смесь воспламеняется без необходимости в использовании свечей.

Электродвигатель

Пожалуй, самый простой и прогрессивный вариант, который лучше вообще исключить из списка. Дело в том, что трехфазный асинхронный двигатель работает по другому принципу, кардинально отличающемуся от традиционных ДВС. Здесь пикового КМ в 600 Нм можно достичь на любой скорости. Если же говорить о «лошадях», у Теслы их количество составит 416.


Но пока электрокары не получили повсеместного распространения. И если этот вариант по каким-либо причинам недоступен, рассмотрим особенности бензиновых и дизельных агрегатов. При одинаковых объемах первый способен давать высокую скорость, второй – быстрый разгон.

Что лучше: мощность или крутящий момент

Мощность и крутящий момент двигателя – величины взаимосвязанные. Это хорошо видно в формуле из первого пункта.

Пик крутящего момента на графике зависимости от частоты вращения мотора появляется раньше, чем пик мощности. Это справедливо как для дизельных, так и для бензиновых моторов. Однако у дизелей крутящий момент достигается раньше, и плато (интервал частоты вращения при пиковом значении) длиннее. У бензиновых ДВС мощность выше, хотя для ее достижения нужно раскрутить мотор почти до максимальных оборотов.

Сказать определенно, что лучше: мощность или крутящий момент, нельзя. Все зависит от случая. Трансмиссия современного авто способна трансформировать эти величины под требуемые условия. Поясним на примерах.

Для тяжелой техники, которой важна тяга в широком диапазоне оборотов, важнее крутящий момент. Мотор должен хорошо тянуть. Раскручивать его до предельных оборотов не нужно. Отчасти поэтому почти вся коммерческая техника оснащается дизельными моторами.

В гоночных автомобилях важнее мощность. Моторы этих авто по оборотам пилоты во время заездов держат в красной зоне. Двигатель отдает максимальную мощность. А трансмиссия преобразовывает мощность в тягу.

Для гражданских авто важен стиль вождения. Для езды на автомате подойдут оба мотора. Автоматическая трансмиссия будет держать мотор в диапазоне оборотов, при которых двигатель отдает максимум своего потенциала.

Для агрессивной езды на механике с раскручиванием двигателя в красную зону тахометра лучше подойдет бензиновый мотор. Но в этом случае нужно понимать, что для получения максимальной производительности от мотора потребуется держать его на пике оборотов и часто переключать передачи. Пик мощности у бензинового ДВС имеет малый диапазон и находится около максимальных оборотов. Для уверенных обгонов и ускорений нужно будет понижать передачу и раскручивать двигатель.

Для размеренной езды, особенно в городе, больше подходит дизель. Для обгона на дизельном авто зачастую не потребуется переходить на пониженную передачу, а высокий крутящий момент в широком диапазоне оборотов позволит реже переключаться.

Калькулятор передаточных чисел, вращения, авто.

Обороты колеса. Передача. Скорость. Мост. Двигатель.

Расчет скорости автомобиля по оборотам и передаточным числам.

Как пользоваться калькулятором.

Ввести в формы ввода :
— обороты двигателя ;
— передаточное число top / верхней передачи механической / автоматической коробки передач ;
— передаточное число моста ;
— радиус колеса, в мм ;
— при указании единиц, вместо запятой ставить точку (требование JavaScript) .
— нажать кнопку Расчет .

Входные данные желательно использовать с информационных / идентификационных табличек автомобиля / агрегатов ; или, из заводских таблиц производителей и сверить на соответствие параметризации / программирования параметров в блоке управления . В случае сомнения, при использовании компонентов с неустановленными характеристиками / утерянными маркировочными табличками — значение Ratio должны быть проверены / вычислены вручную, так как они являются критическими параметрами .

Как вычислить передаточное отношение редуктора моста автомобиля.

Пример расчета передаточного отношения / Axle Ratio по типу моста .

* Примечание, как правильно измерить передаточное число моста : .
— установить противо / откатные упоры под колеса .
— поднять домкратом одно (!) колесо моста .
— выключить блокировку, снять с ручного / стояночного тормоза .
— вращать карданный вал и считать обороты вращения колеса .

Как откалибровать показания спидометра, если тип КП — неизвестен ?

Нередки случаи, когда идентификационные таблички коробки передач — утеряны, повреждены или отгнили за давностью срока эксплуатации . Как, в таком случае, откалибровать ошибочные показания спидометра, зная, что они могут исключительно влиять на рабочие характеристики транспортного средства ? . Есть два пути : трудный / правильный и простой . Как правило — требуется знать значения передаточных чисел Top / верхней передачи и (иногда) top — 1 (то есть — предпоследней передачи) . В первом случае следует вывесить колеса авто, включить скорость и вращая двигатель (вручную) известное количество оборотов (производя подсчет вращений выходного вала коробки передач) — посчитать и вычислить ее Gear Ratio .

Второй вариант — более простой . Выяснив и запрограммировав в блок управления уже известные значения (мосты и колеса), на заведомо фиксированных оборотах двигателя — произвести тестовые поездки с контролем скорости по тахографу или GPS навигатору . Это делается для того, чтобы эмпирическим путем, в процессе экспериментов — попытаться подобрать наиболее точное значение коробки переключения передач — наиболее точно соответствующее фактической скорости движения транспортного средства .

Читать еще:  Чем утеплить двигатель автомобиля 2110

Исходя из обратного, получив значения последней и предпоследней передач и используя ее конфигурационные отличительные признаки сборки (установленных компонентов, клапанов и актуаторов) — можно даже попытаться выяснить правильный тип / марку коробки передач по технической документации производителя . С автоматической коробкой передач — процесс идентификации может быть дополнительно облегчен считыванием маркировки / кодов и сервисных меток из электронного блока управления .

Калькулятор оборотов по передаточным числам.

Калькулятор оборотов : двигателя / трансмиссии / колеса / скорости — какие параметры высчитываются ? . Калькулятор вычисляет длину окружности колеса, значение оборотов на километр (используемое при параметризации электронного блока управления), и текущую скорость автомобиля (для заданных параметров) . Выходные обороты агрегатов на основании передаточных отношений — будут рассчитаны последовательно и выведены в таблице / сверху . Промежуточные результаты вычислений заполняются в нижних строках таблицы .

Анализ расчетов данных позволяет определить нарушения текущей конфигурации автомобиля, а подбор значений дает возможность просчитать новую конфигурацию, которая должна быть взаимно / согласованная, что обязательно скажется на правильных соотношениях крутящего момента, мощности, точек переключения коробки передач и экономичности автомобиля / грузовика, неразрывно связанных с уменьшением расхода топлива .

Преобразование мощности крутящего момента в мощность силы ускорения / скорости в этом калькуляторе не учитывается, так как серьезные отклонения от заводской конфигурации требуют полного пересмотра характеристик всех используемых агрегатов в зависимости от назначения и вида исполняемых работ, определяющих нагрузку на транспортное средство, что не может быть подсчитано в простом калькуляторе . Однако, правильное согласование параметров программирования ЭБУ, при незначительных, но допустимых отклонениях — позволит компонентам работать в согласованном режиме взаимодействия (легко катиться автомобилю) :
— обеспечит правильные показания спидометра / километража пробега ;
— соответствующее значение стрелки тахометра в зеленой / экономичной зоне движения ;
— правильный учет расхода топлива ;
— правильное согласование затребованной / и желаемой мощности ;
что, в конечном счете — приведет к общему улучшению рабочих / эксплуатационных характеристик транспортного средства, сокращению неоправданного износа и перерасхода ГСМ, предотвращение внеочередного / внепланового ремонта и улучшение отношения (к нему) исполнителей и работодателей / владельцев автотранспорта .

Основной текст статьи был написан в августе 2019 .

Отредактировано : июнь, 2021 .

Меню раздела, новости и новые страницы.

Калькулятор стоимос . Стоимость грузоперевозок. Калькулятор стоимости. Руб км. Цена километр. Пер . Динамометрический с . Мощность, сила авто и грузовика. Динамометрическое измерение, мощностных ха . Калькулятор фундаме . Фундамент строения — предварительный расчет, вес и размер, прочность, площа . Топливо. Расход. Ли . Километр. Топливо. Расход. Литр в час. Калькулятор. Cкорость расход топлива . Обороты колеса. Пер . Оборот колеса, значение. Ratio. Передаточные числа коробки передач. Правиль . Калькулятор хода по . Калькулятор мотора, двигателя. Ход поршня по окружности демпфера и повороту . Расход топлива в ча . Калькулятор. Расход топлива литров в час. Расчет параметров работы цилиндро . Игра Грибы, для все . Война, борьба с грибами. Люди в панике. Земля — в опасности. Онлайн игра Гр . Калейдоскоп игрушка . Калейдоскоп, детская забавная игра относительно оси симметрии — привлекател . Игра Кубики. Самая . Кубики — онлайн компьютерная игра, конструктор для детей и взрослых любого . Игра Пазлы, для все . Играть в пазлы онлайн на компьютере — простые и бесплатные компьютерные игр . Быстрый поиск по са . Быстрый поиск в браузере при серфинге в интернете поможет быстро найти нужн . Главные новости, об . Свежие российские и мировые новости одной строкой. Новостной дайджест. Сайт .

Просто и аскетично. © 2021 ТехСтоп Екатеринбург.

С 2016++ техническая остановка создается вместе с вами и для вас .

Асинхронные электродвигатели. Принцип работы

Асинхронные электродвигатели – это надёжное, долговечное и недорогое устройство, преобразующее электроэнергию в механическую и позволяющее решить много задач в работе вентиляции, компрессии, подъёмных механизмов и многие другие.

Возможно и бытовое применение электродвигателей с малой мощностью.

В конце XIX века учёным Михаилом Доливо-Добровольским был разработан асинхронный электродвигатель (электродвигатель переменного тока). А уже в 1893г. была создана впервые в мире промышленная сеть переменного 3-фазного тока на базе элеватора в Новороссийске.
Сегодня невозможно представить не только производство, но и дом, в котором нет этого простого, но эффективного устройства.

Устройство асинхронного электродвигателя

Классическая конструкция двигателя включает в себя:

Статор – неподвижная (статичная) часть двигателя имеет цилиндрическую форму. Для минимилизации потерь из-за вихревых токов (токи Фуко) сердечник статора делают из тонких стальных пластин, которые изолированы окалиной или скреплены лаком. Сердечник статора имеет пазы, куда крепятся обмотки под углом 120 градусов по отношению друг к другу.

Ротор – подвижная часть, бывает двух видов:

  1. Короткозамкнутый представляет собой сердечник, состоящий из алюминиевых стержней накоротко замкнутыми торцевыми кольцами (беличья клетка);
  2. Фазный, состоящий из трёхфазной обмотки, соединённой звездой или треугольником, и помещённой в пазы шихтованного сердечника ротора.

Обе части разделены воздушным зазором.

Вентилятор или независимая вентиляция.

Принцип работы асинхронного электродвигателя

Иногда можно встретить определение асинхронного двигателя как коллекторного либо индукционного. Это объясняется тем, что посредством вращающегося поля статора индуцируется ток в обмотке.

В основу принципа работы асинхронного электродвигателя положено вращение магнитного поля. То есть электродвигатель приводится в движение вследствии взаимодействия магнитных полей ротора и статора.

Синхронной скоростью двигателя называют скорость вращения магнитного поля статора, а скорость вращения ротора асинхронной, потому как она отличается от скорости вращения магнитного поля статора на 2-3%, когда двигатель вращается в холостую, и примерно на 5-8% при нагрузке. Это отставание обусловлено тем, что при совпадении скорости магнитного поля статора и скорости ротора в обмотках ротора перестала бы наводиться ЭДС и вращающий момент не появится. Разность между скоростями поля статора и ротора называют скольжением.

Рассмотрим принцип работы на примере 3х-фазного двигателя с тремя обмотками, установленными под углом 120 градусов, как показано на рисунке справа. Переменный ток проходит по обмоткам статора, создавая магнитное поле в каждой из катушек. Вращающееся магнитное поле статора наводит ЭДС в обмотках ротора. ЭДС в замкнутых проводниках создает ток, который при взаимодействии с магнитным полем приводит к вращению ротора. Скольжение с разгоном двигателя уменьшается, стремясь к 2-3% в холостом режиме.

Однофазные электродвигатели

Асинхронные двигатели переменного тока имеют одну рабочую обмотку. При протекании синусоидального напряжения по обмотке статора создается пульсирующее магнитное поле, изменяющееся по величине, но неподвижное в пространстве.

Основная проблема возникает при пуске двигателя.

В теории возможно запустить его, физически воздействуя на вал и задав вращение в любую сторону. На практике же выделяют 4 способа пуска однофазного двигателя:

    Электродвигатель CSIR с пуском с помощью конденсатора, работа через обмотку.

Наиболее многочисленная группа однофазных электродвигателей, ограничена мощностью 1,1 кВт. Конденсатор последовательно соединён с пусковой обмоткой, он создаёт отставание между пусковой и главной обмотками.
Это способствует сдвигу фаз пусковой и рабочей обмотки, образуя появление вращающегося поля, влияя на возникновение вращающего момента. При достижении рабочей частоты вращения открывается пускатель, и двигатель продолжает работать в обычном режиме.

Электродвигатель CSCR с пуском через конденсатор, работа через конденсатор.

Двигатели CSCR работают с постоянно подключённым конденсатором к пусковой обмотке и подключаемым при включении пусковым конденсатором. Являются лучшим вариантом для работы в сложных условиях. Конденсатор последовательно соединён с пусковой обмоткой, что обеспечивает высокий пусковой момент.
Электродвигатели CSCR – это самые мощные однофазные двигатели, их мощность достигает 11 кВт.
Могут использоваться для работы с низким током нагрузки и при более высоком КПД, что даёт преимущества: в частности, обеспечивает работу двигателя с меньшими скачками температур по сравнению с другими однофазными электродвигателями.

Читать еще:  Характеристики двигателя vortex corda

Электродвигатель RSIR с пуском через сопротивление, работа через обмотку.

Этот тип двигателей ещё называют: «электродвигатель с расщеплённой фазой». Имеют ограничение по мощности до 0,25 кВт.
Наиболее дешёвый вариант однофазных электродвигателей.
Пусковое устройство двигателя RSIR имеет две обмотки статора, одна из которых используется только для пуска, диаметр этой обмотки меньше, что увеличивает сопротивление. Это создаёт отставание вращающегося поля, что приводит двигатель в движение.
Электронный пускатель отсоединяет пусковую обмотку при достижении приблизительно 75% от номинального значения. После чего двигатель продолжает работу в обычном режиме.

Примечание: данный тип электродвигателя имеет высокие пусковые токи от 700 до 1000% от номинального значения тока.
Продолжительный пуск может быть губительным для обмотки вследствие перегрева двигателя. Это означает, что их нельзя использовать там, где нужен большой пусковой момент.

Электродвигатель PSC с постоянным разделением ёмкости.

Данный электродвигатель оснащён постоянно включённым конденсатором, последовательно соединённым с пусковой обмоткой. Двигатель PSC не имеет конденсатора, который используется только для пуска. «Пусковая» обмотка становится вспомогательной в момент, когда двигатель достигает рабочей частоты вращения.
Наиболее подходят для областей применения с продолжительным рабочим циклом.
Есть ограничение по мощности – 2,2 кВт.

Трёхфазные двигатели

Трехфазные асинхронные электродвигатели, как правило, используются только на крупных промышленных предприятиях, т.к. для его работы требуется трёхфазное напряжение 380 В AC.

Отличаются по мощности и количеству обмоток. С мощностью всё понятно, чем больше мощность, тем большее усилие создаётся на валу электродвигателя.

Количество обмоток влияет на частоту вращения двигателя, а именно:
при частоте трёхфазного тока f равной 50 Гц или 3000 периодов в минуту, число оборотов N вращающегося поля в минуту будет:

  • при 2 полюсах на статоре: N = (50х60) / 1 = 3000 об/мин,
  • при 4 полюсах на статоре: N = (50х60) / 2 = 1500 об/мин,
  • при 6 полюсах на статоре: N = (50х60) / 3 = 1000 об/мин,
  • при числе пар полюсов статора, равном P: N = (fх60) / P.

Коммутационная колодка трехфазного двигателя имеет 6 зажимов, которые соединяются с началом (U1, V1, W1) и концом (U2, V2, W2) обмотки каждой фазы.

Возможно подключение обмотки трёхфазного электродвигателя в двух режимах: «звезда» и «треугольник».

  • При подключении двигателя «треугольником» фазные концы обмоток подключаются последовательно друг с другом с напряжением 220 В AC.
  • При подключении двигателя «звездой» все выходные концы фазных обмоток соединяются в один узел с напряжением 380 В AC.

При малых напряжениях нагрузки рекомендуется использовать соединение «треугольник», при более высоких – «звезду».

При необходимости получить консультацию по подключению и работе электродвигателя,
а также по приобретению устройств, которые помогут улучшить его работу,
обращайтесь к специалистам Компании « РусАвтоматизация » .

Хотите сохранить
эту статью? Скачайте
её в формате PDF
Остались вопросы?
Обсудите эту статью
на нашей странице В Контакте
Хочешь читать статьи
первым, подписывайся на
наш канал в Яндекс.Дзен

Рекомендуем прочитать также:

Принудительное охлаждение электродвигателя

Пуск центробежного насоса

Применение УПП для центробежных вентиляторов

Частота вращения: формула

При проектировании оборудования необходимо знать число оборотов электродвигателя. Для расчёта частоты вращения есть специальные формулы, различные для двигателей переменного и постоянного напряжения.

Синхронные и асинхронные электромашины

Двигатели переменного напряжения есть трёх типов: синхронные, угловая скорость ротора которых совпадает с угловой частотой магнитного поля статора; асинхронные – в них вращение ротора отстаёт от вращения поля; коллекторные, конструкция и принцип действия которых аналогичны двигателям постоянного напряжения.

Синхронная скорость

Скорость вращения электромашины переменного тока зависит от угловой частоты магнитного поля статора. Эта скорость называется синхронной. В синхронных двигателях вал вращается с той же быстротой, что является преимуществом этих электромашин.

Для этого в роторе машин большой мощности есть обмотка, на которую подаётся постоянное напряжение, создающее магнитное поле. В устройствах малой мощности в ротор вставлены постоянные магниты, или есть явно выраженные полюса.

Скольжение

В асинхронных машинах число оборотов вала меньше синхронной угловой частоты. Эта разница называется скольжение «S». Благодаря скольжению в роторе наводится электрический ток, и вал вращается. Чем больше S, тем выше вращающий момент и меньше скорость. Однако при превышении скольжения выше определённой величины электродвигатель останавливается, начинает перегреваться и может выйти из строя. Частота вращения таких устройств рассчитывается по формуле на рисунке ниже, где:

  • n – число оборотов в минуту,
  • f – частота сети,
  • p – число пар полюсов,
  • s – скольжение.

Формула расчёта скорости асинхронного двигателя

Такие устройства есть двух типов:

  • С короткозамкнутым ротором. Обмотка в нём отливается из алюминия в процессе изготовления;
  • С фазным ротором. Обмотки выполнены из провода и подключаются к дополнительным сопротивлениям.

Регулировка частоты вращения

В процессе работы появляется необходимость регулировки числа оборотов электрических машин. Она осуществляется тремя способами:

  • Увеличение добавочного сопротивления в цепи ротора электродвигателей с фазным ротором. При необходимости сильно понизить обороты допускается подключение не трёх, а двух сопротивлений;
  • Подключение дополнительных сопротивлений в цепи статора. Применяется для запуска электрических машин большой мощности и для регулировки скорости маленьких электродвигателей. Например, число оборотов настольного вентилятора можно уменьшить, включив последовательно с ним лампу накаливания или конденсатор. Такой же результат даёт уменьшение питающего напряжения;
  • Изменение частоты сети. Подходит для синхронных и асинхронных двигателей.

Внимание! Скорость вращения коллекторных электродвигателей, работающих от сети переменного тока, не зависит от частоты сети.

Двигатели постоянного тока

Кроме машин переменного напряжения есть электродвигатели, подключающиеся к сети постоянного тока. Число оборотов таких устройств рассчитывается по совершенно другим формулам.

Номинальная скорость вращения

Число оборотов аппарата постоянного тока рассчитывается по формуле на рисунке ниже, где:

  • n – число оборотов в минуту,
  • U – напряжение сети,
  • Rя и Iя – сопротивление и ток якоря,
  • Ce – константа двигателя (зависит от типа электромашины),
  • Ф – магнитное поле статора.

Эти данные соответствуют номинальным значениям параметров электромашины, напряжению на обмотке возбуждения и якоре или вращательному моменту на валу двигателя. Их изменение позволяет регулировать частоту вращения. Определить магнитный поток в реальном двигателе очень сложно, поэтому для расчетов пользуются силой тока, протекающего через обмотку возбуждения или напряжения на якоре.

Формула расчёта числа оборотов двигателя постоянного тока

Число оборотов коллекторных электродвигателей переменного тока можно найти по той же формуле.

Регулировка скорости

Регулировка скорости электродвигателя, работающего от сети постоянного тока, возможна в широких пределах. Она возможна в двух диапазонах:

  1. Вверх от номинальной. Для этого уменьшается магнитный поток при помощи добавочных сопротивлений или регулятора напряжения;
  2. Вниз от номинальной. Для этого необходимо уменьшить напряжение на якоре электромотора или включить последовательно с ним сопротивление. Кроме снижения числа оборотов это делается при запуске электродвигателя.

Знание того, по каким формулам вычисляется скорость вращения электродвигателя, необходимо при проектировании и наладке оборудования.

Видео

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector