0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Автомобильный двигатель из чего состоит

Устройство автомобилей

Общее устройство двигателя

Анализ развития энергетических установок для автомобильного транспорта показывает, что в настоящее время двигатель внутреннего сгорания (ДВС) является основным силовым агрегатом, и его дальнейшее совершенствование имеет большие перспективы.

Автомобильный поршневой двигатель внутреннего сгорания представляет собой комплекс механизмов и систем, служащих для преобразования тепловой энергии сгорающего в цилиндрах топлива в механическую работу.

Основу механической части любого поршневого двигателя составляют кривошипно-шатунный механизм (КШМ) и газораспределительный механизм (ГРМ) .
Кроме того, тепловые двигателя оснащены специальными системами, каждая из которых выполняет определенные функции по обеспечению бесперебойной работы двигателя.
К таким системам относятся:

  • система питания;
  • система зажигания (в двигателях с принудительным воспламенением рабочей смеси) ;
  • система пуска;
  • система охлаждения;
  • система смазки (смазочная система) .

Каждая из перечисленных систем состоит из отдельных механизмов, узлов и устройств, а также включает специальные коммуникации (трубопроводы или электропровода) .

Кривошипно-шатунный механизм двигателя

Кривошипно-шатунный механизм (КШМ) двигателя преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Очевидно, что передавать вращательное движение между отдельными механизмами, агрегатами и узлами автомобиля значительно проще, чем циклическое поступательное движение, которое описывает поршень, перемещаясь в цилиндре.
Кроме того, конечное звено трансмиссии автомобиля – его колеса – перемещают автомобиль посредством вращения, поэтому назначение КШМ вполне понятно.
Можно допустить, что для транспортного средства, перемещающегося по дороге с помощью, например, шагающих устройств или циклических движителей, преобразование поступательного движения во вращательное не является обязательным. Но автомобиль — колесное транспортное средство (по определению) , что обуславливает присутствие кривошипно-шатунного механизма в конструкции автомобильного двигателя.

Газораспределительный механизм двигателя

Газораспределительный механизм (ГРМ) обеспечивает поступление в цилиндры двигателя заряда рабочей смеси (в двигателях с внешним смесеобразованием) или воздуха (в двигателях с внутренним смесеобразованием) , а также для удаления (выпуска) отработавших газов и продуктов сгорания топлива.
При этом газораспределительный механизм должен обеспечивать обмен газов в цилиндрах в строго определенное время, соответственно тактам работы двигателя, и в необходимом количестве, обеспечивающем качественный состав рабочей смеси для полного сгорания топлива и получения максимального эффекта от выделяемой при этом теплоты.

Система питания двигателя

В цилиндрах автомобильного двигателя сгорает смесь воздуха (точнее – кислорода, содержащегося в воздухе) и горючего, в качестве которого чаще всего используются дизельное топливо (солярка) , газовое топливо, либо бензин. Система питания предназначена для подачи топлива и воздуха в цилиндры двигателя в нужном количестве и определенных пропорциях.
Различают два основных типа систем питания двигателей: системы с внешним смесеобразованием , в которых воздух и топливо смешиваются вне цилиндра двигателя, а также с внутренним смесеобразованием , в которых топливо и воздух подаются в цилиндры раздельно и смешиваются внутри цилиндра.

К первому типу можно отнести системы питания, оснащенные специальным смесительным устройством – карбюратором, обеспечивающим распыл топлива в воздушной струе и перемешивание компонентов смеси, которая затем поступает в цилиндры двигателя. К двигателям с внешним смесеобразованием относятся некоторые типы двигателей с впрыском бензина (инжекторные двигатели с центральным или распределенным впрыском во впускной коллектор) , а также многие типы газовых двигателей.

Ко второму типу относятся дизельные и инжекторные системы питания с непосредственным впрыском, обеспечивающие заполнение цилиндров двигателя атмосферным воздухом с последующим впрыском топлива с помощью специальных устройств непосредственно в камеру сгорания, где и происходит смешивание топлива с кислородом воздуха. При этом воспламенение смеси в дизельных двигателях осуществляется посредством сильного сжатия самовоспламенением, а в инжекторных — принудительно, от искры.
Некоторые типы газовых двигателей тоже используют внутреннее смесеобразование.

Система зажигания

Назначение этой системы – принудительное воспламенение рабочей смеси в бензиновых и газовых двигателях. Дизельные двигатели не нуждаются в системе зажигания – воспламенение рабочей смеси в них осуществляется благодаря высокой степени сжатия воздуха в цилиндрах, который в буквальном смысле становится раскаленным.

В современных двигателях чаще всего используется воспламенение смеси искровым электрическим разрядом, однако, это – не единственное возможное техническое решение – так, например, в конструкциях первых тепловых двигателей внутреннего сгорания применялись запальные трубки, воспламеняющие рабочую смесь горящим веществом.
Возможны и другие способы поджигания смеси, однако, наиболее удобной для практического применения в настоящее время считается электроискровая система зажигания.

Система пуска двигателя

Система пуска обеспечивает вращение коленчатого вала двигателя при его запуске. Это необходимо для начала функционирования механизмов и систем, обеспечивающих работу двигателя – кривошипно-шатунного и газораспределительного механизмов, систем питания и зажигания.

Для запуска современных автомобильных двигателей чаще всего применяются системы пуска с помощью привода от специального электрического двигателя – стартера. Этот способ запуска двигателя внутреннего сгорания является удобным, надежным и легко осуществимым. Однако, существуют и другие технические решения этой задачи, например, посредством пневматического мотора, работающего на запасе сжатого воздуха в ресиверах (специальных баллонах) автомобиля или полученного от небольшого компрессора с электроприводом.

Простейшая система пуска двигателя – заводная рукоятка, с помощью которой водитель (или его помощник) проворачивают коленчатый вал, обеспечивая тем самым начало работы механизмов и систем двигателя. В недалеком прошлом заводная рукоятка являлась непременной принадлежностью, которую водитель брал с собой в путь. Однако, при несомненной простоте этого «устройства», комфорта и удобства использования автомобиля такой метод пуска двигателя не добавляет, поэтому в кабине современного автомобиля заводную рукоятку (или, как ее называли в шутку водители – «кривой стартер») вы найдете вряд ли.
Кроме того, с помощью ручного пуска сложно запустить дизель – не позволяет высокая степень сжатия и вероятность травмирования водителя при запуске.

Система охлаждения двигателя

Как и следует из названия, эта система предназначена для поддержания баланса температуры работающего двигателя. Сжигание рабочей смеси в цилиндрах сопровождается сильным нагревом узлов и деталей двигателя, которые нуждаются в постоянном охлаждении, чтобы избежать перебоев в работе и поломок, обусловленных, например, температурными расширениями металла или даже прогоранием деталей и элементов конструкций.
Наиболее распространены два типа систем охлаждения, применяемые в автомобильных двигателях – жидкостная и воздушная; о принципах их действия можно догадаться по названию.

Из теплотехники известно, что для эффективного охлаждения двигателя необходим теплообменник, имеющий большую площадь поверхности для передачи тепла. В двигателях с жидкостным охлаждением в качестве такого теплообменника используется радиатор, состоящий из большого количества трубок, сквозь которые перемещается нагретая жидкость, отдавая тепло стенкам. Суммарная площадь поверхности трубок в радиаторе очень большая, а эффективность отвода тепла повышается специальным вентилятором, установленным рядом с радиатором.

В двигателях с воздушным охлаждением для этих целей применяют оребрение поверхностей наиболее нагреваемых деталей (цилиндров и их головок) , в результате чего площадь теплообмена значительно увеличивается.
Воздушные системы охлаждения на современных быстроходных двигателях применяются редко из-за низкой эффективности (по сравнению с жидкостной системой охлаждения) . Чаще всего охлаждение воздухом используют в низкооборотистых, мотоциклетных или небольших двигателях внутреннего сгорания, не предназначенных для выполнения тяжелой механической работы, а также для работы в условиях хорошего обдува (самолетные ДВС) .

Система смазки двигателя

Система смазки предназначена для уменьшения потерь механической энергии на преодоление сил трения, возникающих между сопрягаемыми подвижными деталями в кривошипно-шатунном и газораспределительном механизмах.
Кроме того, смазывание деталей способствует уменьшению их износа и частичному охлаждению.

Чаще всего в конструкции автомобильных двигателей применяется смазка деталей под давлением, когда из отдельного резервуара масло подается по трубопроводам и каналам с помощью насоса к деталям, нуждающимся в смазке.
Некоторые детали механизмов смазываются благодаря разбрызгиванию масла или посредством периодического окунания в масляную ванну.

Представленный ниже видеоролик поможет лучше понять общее устройство поршневого двигателя внутреннего сгорания.

Принцип работы и устройство двигателя автомобиля. Техническое обслуживание двигателя автомобиля

Большинство водителей понятия не имеют, каким является устройство двигателя автомобиля. А знать это необходимо, ведь не зря при обучении во многих автошколах ученикам рассказывают принцип работы ДВС. Иметь представление о работе двигателя должен каждый водитель, ведь эти знания могут пригодиться в дороге.

Конечно, существуют разные типы и марки двигателей автомобилей, работа которых отличается между собой в мелочах (системы впрыскивания топлива, расположение цилиндров и т. д.). Однако основной принцип для всех типов ДВС остается неизменным.

Устройство двигателя автомобиля в теории

Устройство ДВС всегда уместно рассматривать на примере работы одного цилиндра. Хотя чаще всего легковые автомобили имеют 4, 6, 8 цилиндров. В любом случае, главная деталь мотора – это цилиндр. В нем располагается поршень, который может двигаться вверх-вниз. При этом существуют 2 границы его передвижения – верхняя и нижняя. Профессионалы их называют ВМТ и НМТ (верхняя и нижняя мертвые точки).

Сам поршень соединен с шатуном, а шатун – с коленчатым валом. При движении поршня вверх-вниз шатун передает нагрузку на коленчатый вал, и тот вращается. Нагрузки от вала передаются на колеса, в результате чего автомобиль начинает движение.

Но главная задача – заставить работать поршень, ведь именно он является главной движущей силой этого сложного механизма. Делается это с помощью бензина, дизельного топлива или газа. Капля топлива, воспламеняющаяся в камере сгорания, отбрасывает поршень с большой силой вниз, тем самым приводя его в движение. Затем поршень по инерции возвращается в верхнюю границу, где снова происходит взрыв бензина и такой цикл повторяется постоянно, пока водитель не заглушит мотор.

Так выглядит устройство двигателя автомобиля. Однако это лишь теория. Давайте рассмотрим более детально циклы работы мотора.

Четырехтактный цикл

Практически все двигатели работают по 4-тактному циклу:

  1. Впуск топлива.
  2. Сжатие топлива.
  3. Сгорание.
  4. Вывод отработанных газов за пределы камеры сгорания.

Схема

Ниже на рисунке показана типичная схема устройства двигателя автомобиля (одного цилиндра).

На этой схеме четко показаны основные элементы:

A – Распределительный вал.

B – Крышка клапанов.

C – Выпускной клапан, через который отводятся газы из камеры сгорания.

D – Выхлопное отверстие.

E – Головка цилиндра.

F – Полость для охлаждающей жидкости. Чаще всего там находится антифриз, который охлаждает нагревающийся корпус мотора.

I – Поддон, куда стекает все масло.

J – Свеча зажигания, образующая искру для поджога топливной смеси.

K – Впускной клапан, через который в камеру сгорания попадает топливная смесь.

L – Впускное отверстие.

M – Поршень, который движется вверх-вниз.

N – Шатун, соединенный с поршнем. Это основной элемент, который передает усилие на коленчатый вал и трансформирует линейное движение (вверх-вниз) во вращательное.

O – Подшипник шатуна.

P – Коленчатый вал. Он вращается за счет движения поршня.

Также стоит выделить такой элемент, как поршневые кольца (их еще называют маслосъемными кольцами). Их нет на рисунке, однако они являются важной составляющей системы двигателя автомобиля. Данные кольца огибают поршень и создают максимальное уплотнение между стенками цилиндра и поршня. Они предотвращают попадание топлива в масляный поддон и масла в камеру сгорания. Большинство старых двигателей автомобилей ВАЗ и даже моторы европейских производителей имеют изношенные кольца, которые не создают эффективное уплотнение между поршнем и цилиндром, из-за чего масло может попадать в камеру сгорания. В такой ситуации будет наблюдаться повышенный расход бензина и «жор» масла.

Как работает двигатель?

Начнем с начального положения поршня – он находится вверху. В данный момент впускное отверстие открывается клапаном, поршень начинает движение вниз и засасывает топливную смесь в цилиндр. При этом всего лишь небольшая капля бензина поступает в емкость цилиндра. Это первый такт работы.

Во время второго такта поршень достигает самой нижней точки, при этом впускное отверстие закрывается, поршень начинает движение вверх, в результате чего топливная смесь сжимается, так как ей в закрытой камере некуда деваться. При достижении поршнем максимальной верхней точки топливная смесь сжата до максимума.

Третий этап – это поджигание сжатой топливной смеси с помощью свечи, которая испускает искру. В результате горючий состав взрывается и толкает поршень с большой силой вниз.

На заключительном этапе деталь достигает нижней границы и по инерции возвращается к верхней точке. В это время открывается выпускной клапан, отработанная смесь в виде газа выходит из камеры сгорания и через выхлопную систему попадает на улицу. После этого цикл, начиная с первого этапа, повторяется снова и продолжается в течение всего времени, пока водитель не заглушит двигатель.

В результате взрыва бензина поршень движется вниз и толкает коленчатый вал. Тот раскручивается и передает нагрузки на колеса автомобиля. Именно так и выглядит устройство двигателя автомобиля.

Отличие в бензиновых моторах

Описанный выше способ является универсальным. По такому принципу построена работа практически всех бензиновых моторов. Дизельные двигатели отличаются тем, что там нет свеч – элемента, который поджигает топливо. Детонация дизельного топлива осуществляется благодаря сильному сжатию топливной смеси. То есть на третьем цикле поршень поднимается вверх, сильно сжимает топливную смесь, и та взрывается естественным образом под действием давления.

Альтернатива ДВС

Отметим, что в последнее время на рынке появляются электрокары – автомобили с электрическими двигателями. Там принцип работы мотора совершенно другой, т. к. источником энергии является не бензин, а электричество в аккумуляторных батареях. Но пока что автомобильный рынок принадлежит автомобилям с ДВС, а электрические двигатели не могут похвастаться высокой эффективностью.

Несколько слов в заключение

Такое устройство ДВС является практически совершенным. Но с каждым годом разрабатываются новые технологии, повышающие КПД работы мотора, осуществляется улучшение характеристик бензина. При правильном техническом обслуживании двигателя автомобиля он может работать десятилетиями. Некоторые успешные моторы японских и немецких концернов «пробегают» миллион километров и приходят в негодность исключительно из-за механического устаревания деталей и пар трения. Но многие двигатели даже после миллионного пробега успешно проходят капремонт и продолжают выполнять свое прямое предназначение.

6. Общее устройство, двигателей

Для нормальной работы двигателя в цилиндры должна подаваться горючая смесь в определенной пропорции (у карбюраторных двигателей) или отмеренные порции топлива в строго определенный момент под высоким давлением (у дизельных двигателей). Для уменьшения затрат работы на преодоление трения, отвода тепла, предотвращения задиров и быстрого износа трущиеся детали смазываются маслом. В целях создания нормального теплового режима в цилиндрах двигатель должен охлаждаться. Из-за высокой степени сжатия запустить дизельный двигатель вручную нельзя. Его оснащают пусковым устройством. Все двигатели, устанавливаемые на тракторах, и автомобилях, имеют однотипную конструктивную схему и включают механизмы и системы, выполняющие определенные функции.

Дизельный двигатель, устанавливаемый на трактор или автомобиль состоит из следующих механизмов и систем.

Кривошипно-шатунный механизм преобразует прямолинейное движение поршней во вращательное движение коленчатого вала, что является наиболее приемлемым для передачи механической энергии, привода в движение ведущих колес трактора и машин.

Газораспределительный механизм управляет работой клапанов, что позволяет в определенных положениях поршня впускать воздух в цилиндры двигателя, сжимать его до определенного давления и удалять из цилиндров отработавшие газы.

Система питания обеспечивает подачу отмеренных порций топлива в определенный момент в распыленном состоянии в цилиндры двигателя.

Смазочная система осуществляет непрерывную подачу масла к трущимся

деталям и отвод теплоты от них.

Система охлаждения предохраняет перегрев стенок камеры сгорания и поддерживает в цилиндрах нормальный тепловой режим.

Система пуска необходима для проворачивания коленчатого вала дизельного двигателя во время его пуска.

Расположение составных частей различных систем дизельного тракторного

двигателя показано на рис. 12.

Автомобильный карбюраторный двигатель имеет механизмы и системы такие же, как у тракторного дизельного двигателя со следующими отличиями:

— система питания автомобильного двигателя предназначена для приготовления горючей смеси в специальном приборе-карбюраторе и подачи ее в цилиндры;

— для зажигания рабочей смеси в цилиндрах карбюраторного двигателя служит система зажигания.

7. Основные показатели и особенности двигателей

Основные показатели, характеризующие работу двигателя, — крутящий

момент, мощность, экономичность и коэффициент полезного действия

Часть тепловой энергии, выделяющаяся при сгорании топлива в цилиндрах двигателя, превращается в механическую. Сила давления газов, действующая на поршень, передается через шатун на кривошип, создавая крутящий момент на коленчатом валу двигателя.

Крутящий момент — это произведение силы, вращающей кривошип, на радиус кривошипа. Крутящий момент выражается в ньютонах на метр (Нм). Развивая определенный крутящий момент, двигатель совершает работу. Работа, выполненная в единицу времени, называется мощностью.

Мощность двигателя измеряют в киловаттах (кВт). Различают индикаторную и эффективную мощность двигателя.

Индикаторной называют мощность, развиваемую газами внутри цилиндра работающего двигателя. Эффективной, или действительной, называют мощность, получаемую на коленчатом валу. Эффективная мощность меньше индикаторной на 10—12%, так как часть мощности затрачивается на преодоление сил трения в механизмах двигателя и приведение в действие вспомогательных устройств (насосов, вентилятора, генератора и др.).

Мощность двигателя растет с увеличением силы давления газов в цилиндре,

частоты вращения коленчатого вала и рабочего объема цилиндров Эффективная мощность двигателя

где — эффективное давление газов (для четырехтактных дизельных двигателей=0,5—0,8 МПа); V — литраж, л; п — частота вращения коленчатого вала, с -1 ; — тактность двигателя (для четырехтактных=2, для двухтактных=1).

Тактность двигателя — это число, показывающее, за сколько оборотов коленчатого вала совершается рабочий цикл. Из формулы определения мощности двигателя видно, что она при неизменных и Ре зависит от литража и частоты вращения коленчатого вала. Если увеличить частоту вращения коленчатого вала без изменения литража, трактор будет энергонасыщенным. Скорость движения такого трактора на всех передачах будет больше во столько раз, во сколько возросла частота вращения коленчатого вала двигателя. Именно за счет роста частоты вращения коленчатого вала рабочие скорости тракторов за последнее время увеличились до 2,5 — 4,16 м/с (9 — 15 км/ч).

Увеличение литража приводит к увеличению размеров двигателя. Чем выше тяговый класс трактора, тем его двигатель имеет больший литраж и, следовательно, обладает большей мощностью.

Механическим коэффициентам полезного действия (КПД) двигателя называют отношение эффективной мощности к индикаторной. Он зависит в основном от качества обработки деталей, смазывания трущихся деталей и правильности сборки двигателя. Величина механического КПД колеблется в пределах 0,80—0,90.

Рис. 12(7). Дизельный двигатель Д — 240 (тракторный вариант): а — вид справа, б — вид слева, 1 — масломерный щуп, 2 — фиксатор для установки поршня первого цилиндра в ВМТ, 3 — маслозаливная горловина, 4 — масляный фильтр, 5 — фильтр грубой очистки топлива, 6 — выпускной коллектор, 7 — воздухоочиститель, 8 — вентилятор, 9 — генератор, 10 — гидронасос рулевого управления, 11 — передняя опора двигателя, 12 — насос ручной подкачки топлива, 13 — топливный насос,14 — компрессор, 15 — форсунка, 16 — фильтр тонкой очистки топлива, 17 — рычаг воздушной заслонки аварийной остановки двигателя, 18 — вентиль выпуска воздуха из топливной системы, 19 — электростартер, 20 — пусковой двигатель, 21 — редуктор пускового двигателя

Эффективным коэффициентом полезного действия называют отношение количества теплоты, превращенной в механическую работу, к количеству теплоты, содержащейся в топливе. Величина эффективного КПД находится в пределах 0,26—0,37. У карбюраторных двигателей она ближе к нижнему, а у дизельных — к верхнему значению.

В исправном двигателе около 30% теплоты идет на получение эффективной мощности. Остальная тепловая энергия расходуется на механические потери (10%), нагрев охлаждающей жидкости (35%) и двигателя (10%), а также уносится с отработавшими газами (15%).

Экономичность работы двигателя характеризуется удельным расходом топлива. Его определяют делением часового расхода топлива на эффективную мощность двигателя. У дизельных двигателей удельный расход топлива не более 72 мкг/Дж [195 г/(э. л. с. • ч)]. Если в двигателе изношены, разрегулированы или не смазаны трущиеся детали, то мощность будет меньше, а экономичность снизится.

Контрольные вопросы. 1. По каким основным признакам классифицируют двигатели? 2. Какие физические законы положены в основу работы двигателя внутреннего сгорания? 3. Из каких деталей состоит простейший двигатель? 4. Что называется камерой сжатия? 5. Что такое степень сжатия? 6. Какие процессы происходят в цилиндре двигателя? 7. Каков порядок работы четырехтактного четырехцилиндрового двигателя? 8. Назовите основные механизмы и системы двигателя. 9. Чем определяется экономичность двигателя? 10. От чего зависит мощность двигателя?

1.2. Устройство и основные параметры двигателя

Поршневой двигатель внутреннего сгорания состоит из следующих механизмов и систем:

  • кривошипно-шатунный механизм (КШМ);
  • газораспределительный механизм (ГРМ);
  • система охлаждения;
  • смазочная система;
  • система питания;
  • система зажигания (в карбюраторном двигателе);
  • система электрического пуска двигателя.

В поршневом ДВС (рис. 1) преобразование энергии происходит в замкнутом объеме, который образован цилиндром, крышкой (головкой) цилиндра и поршнем. В карбюраторном двигателе горючая смесь вводится в цилиндр через впускной клапан, смешиваясь с остатками отработавших газов — образует рабочую смесь, которая сжимается поршнем и воспламеняется. Образовавшиеся при сгорании газы перемещают поршень, который через шатун передает усилие на кривошип коленчатого вала, поворачивая его вокруг оси. Отработавшие газы вытесняются при обратном движении поршня через выпускной клапан. Таким образом, тепловая энергия преобразуется в механическую, а возвратно-поступательное движение — во вращательное как наиболее удобный для трансформации вид движения.

Рис. 1.
Схема четырехтактного одноцилиндрового карбюраторного двигателя:
1 — распределительный вал; 2 — толкатель; 3 — цилиндр; 4 — поршень; 5 — штанга; 6 — впускной клапан; 7 — коромысло; 8 — свеча зажигания; 9 — выпускной клапан; 10 — поршневые кольца; 11 — шатун; 12 — коленчатый вал; 13 — поддон

При вращении коленчатого вала поршень дважды за один оборот останавливается и меняет направление движения.

Основные параметры двигателей

Верхняя мертвая точка (ВМТ) — крайнее верхнее положение поршня (рис. 2).

Нижняя мертвая точка (НМТ) — крайнее нижнее положение поршня. Радиус кривошипа — расстояние от оси коренной шейки коленчатого вала до оси его шатунной шейки.

Ход поршня S — расстояние между крайними положениями поршня, равное удвоенному радиусу кривошипа коленчатого вала. Каждому ходу поршня соответствует поворот коленчатого вала на угол 180° (пол-оборота).

Рис. 2.
Основные положения кривошипно-шатунного механизма:
а — ВМТ; б — НМТ; Vc — объем камеры сгорания; Vh — рабочий объем цилиндра; D — диаметр цилиндра; S — ход поршня

Ход поршня S и диаметр D цилиндра обычно определяют размеры двигателя.

Такт — часть рабочего цикла, происходящая за один ход поршня.

Объем камеры сгорания — объем пространства над поршнем при его положении в ВМТ.

Рабочий объем цилиндра объем пространства, освобождаемого поршнем при перемещении его от ВМТ к НМТ.

Полный объем цилиндра — объем пространства над поршнем при нахождении его в НМТ. Очевидно, что полный объем цилиндра равен сумме рабочего объема цилиндра и объема камеры сгорания.

Степень сжатия ε — отношение полного объема цилиндра к объему камеры сгорания.

Индикаторная мощность Ni, мощность, развиваемая газами в цилиндре.

Эффективная (действительная) мощность Ne — мощность, развиваемая на коленчатом валу двигателя. Эффективная мощность Ne меньше индикаторной Ni, так как часть последней затрачивается на трение и на приведение в движение вспомогательных механизмов. Эта мощность называется мощностью механических потерь Nм.

Механический КПД (коэффициент полезного действия) двигателя ηм — отношение эффективной мощности к индикаторной:

Индикаторный КПД ηi, представляет собой отношение теплоты Qi эквивалентной индикаторной работе, ко всей теплоте Q, введенной в двигатель с топливом.

Эффективный КПД ηе — отношение количества теплоты Q2, превращенного в механическую работу на валу двигателя, ко всему количеству теплоты Q1, подведенному в процессе работы.

Среднее эффективное давление ре — произведение среднего индикаторного давления рi (давление, действующее на поршень в течение одного хода поршня) на механический КПД ηм.

Удельный индикаторный расход топлива qi — количество топлива, расходуемого в двигателе для получения в течение 1 ч индикаторной мощности 1 кВт.

Удельный эффективный расход топлива ge — количество топлива, которое расходуется в двигателе для получения в течение 1 ч 1 кВт эффективной мощности.

Бензиновые двигатели и их устройство

Принцип работы бензинового силового агрегата состоит в следующем: небольшой объем топливной смеси поступает в камеру сгорания, там происходит ее воспламенение и взрыв, в результате которого высвобождается определенная энергия. В двигателе внутреннего сгорания таких взрывов происходит несколько сотен за минуту.

Расширяющийся в камере сгорания газ давит на поршень (М), который при помощи шатуна (N) вращает коленвал (P).

Цикл работы бензинового двигателя состоит из следующих этапов:

• Впускной такт. В этот момент начинается движение поршня вниз, происходит открытие впускного клапана. В цилиндр поступает топливовоздушная смесь.

• Сжатие. Поршень начинает двигаться вверх, тем самым сжимает смесь в цилиндрах, что необходимо для выделения большей энергии при последующем взрыве.

• Рабочий такт. Когда поршень поднимается до верхней мертвой точки в цилиндре, в работу включается свеча зажигания и поджигает топливную смесь. После взрыва поршень движется уже вниз.

• Выпускной такт. После достижения поршнем крайней нижней точки, происходит открытие выпускного клапана, через который продукты сгорания и уходят из камеры.

После выхода продуктов сгорания начинается новый цикл работы ДВС.

Результат работы силового агрегата – получение вращательного движения, которое оптимально подходит для проворота колес машины. Достигается это за счет использования коленчатого вала, который и преобразует линейную энергию во вращение.

Устройство и основные детали бензиновых ДВС

Цилиндр – важнейшая часть бензинового мотора, в котором происходит движение поршня, вызванное взрывом топливной смеси. В описанном выше примере речь идет об одном цилиндре. Такое устройство может иметь двигатель моторной лодки или сенокосилки. В моторах же автомобилей цилиндров больше – три, четыре, пять, шесть, восемь, двенадцать и более.

Расположение цилиндров в ДВС может быть следующим:

— рядным:

— V-образным:

— оппозитным (цилиндры горизонтально располагаются друг напротив друга):

Каждое расположение цилиндров имеет свои плюсы и минусы, из которых складывается характеристики тех или иных двигателей и затраты на их производство.

Поршень (М). Эта деталь выполнена в виде металлического цилиндра, двигается вверх-вниз внутри цилиндра уже двигателя.

Клапаны. Могут быть впускными (A) и выпускными (J). Открываются они в различные такты работы двигателя. Через впускные подается топливовоздушная смесь, через выпускные выходят выхлопные газы. В моменты сжатия и сгорания топлива все клапаны закрыты.

Свечи зажигания (К). С их помощью подается искра, которая необходима для воспламенения топлива. Правильная работа двигателя подразумевает точный момент подачи искры (раннее или позднее зажигание – неисправности). На каждый цилиндр двигателя приходится минимум одна свеча.

Поршневые кольца (М). Являются скользящим уплотнением между поршнем и стенкой цилиндра.

С их помощью выполняются следующие функции:

• топливовоздушная смесь не проникает из камеры сгорания в картер во время работы ДВС;

• препятствуют проникновению моторного масла из картера в камеры сгорания.

В автомобилях, страдающих повышенным расходом масла, его угар в 90% случаев происходит из-за износа поршневых колец. Понять, что кольца изношены можно замеряв компрессию двигателя на СТО. Но, стоит понимать, что в случае закоксовки маслосъемных колец компрессионные кольца могут быть в порядке, а значит — и компрессия будет в норме, хотя кольца уже пора менять.

Коленчатый вал (Р). С его помощью поступательные движения поршней преобразуются во вращательное движение. К коленвалу крепится маховик, который необходим для запуска двигателя — бендикс стартера своими зубьями вращает именно его венец. К маховику крепится и корзина сцепления. На другом конце коленчатого вала находится шкив. Шкив вращает посредством ременной или цепной передачи привод ГРМ. Некоторые конструкции двигателей имеют дополнительные шкивы, которые используются для вращения навесного оборудования.

Картер (G). В нем находится коленвал и некоторое количество моторного масла.

Шатун (N). Служит для соединения между собой коленвала и поршня.

Распределительный вал (I). Его задача заключается в своевременном открытии и закрытии выпускных и впускных клапанов.

Гидравлические компенсаторы (на схеме не обозначены). Применяются не на всех моторах, служат для автоматической регулировки зазора между распределительным валом и клапанами. В случае же их отсутствия, зазор регулируется при помощи специальных шайб, и проводить эту процедуру необходимо на СТО на определенном пробеге двигателя.

Блок цилиндров (F). Самая большая часть двигателя, его основа. Может быть как чугунным, так и алюминиевым. Верхняя часть блока содержит головку (D) и клапанную крышку (B). Рабочие отверстия блока это и есть цилиндры двигателя.

Навесное оборудование.

На вышеуказанной схеме оно не обозначено, но стоит чуть подробнее описать его. Все навесное оборудование состоит из отдельных самостоятельных устройств или элементов различных систем. Это, прежде всего:

Генератор. Служит для превращения механической энергии в электрическую, необходимую для питания бортовой сети автомобиля и зарядки АКБ. Заведенный автомобиль питает свою электронику от генератора.

Стартер. Пуск автомобиль осуществляется с его помощью.

Инжектор или карбюратор. Эти устройства служат для приготовления топливовоздушной смеси. Карбюратор уже не используется на относительно новых автомобилях. Теперь производители используют топливную рампу с форсунками и инжектор.

ТНВД. Топливный насос высокого давления используется и на некоторых бензиновых двигателях. Его задача – нагнетать под давлением определенное количество топлива и регулировать момент и количество его подачи.

Турбокомпрессор (турбина). Осуществляет принудительную подачу воздуха в цилиндры, чем увеличивает его мощность.

Водяной насос (помпа) системы охлаждения. Отвечает за циркуляцию антифриза по системе. Стоит отметить и термостат системы охлаждения, который пускает антифриз по малому или большому кругу (в зависимости от степени нагрева ОЖ).

Компрессор кондиционера. Отвечает за циркуляцию хладагента в системе кондиционирования.

Насос ГУР (гидроусилителя руля). Перемещает жидкость ГУР по системе рулевого управления.

Различные датчики, регуляторы и устройства. Датчики давления масла, массового расхода воздуха (ДМРВ), РХХ (регулятор холостого хода), положения дроссельной заслонки, сама дроссельная заслонка, ДПКВ (датчик положения коленвала), ДПРВ (датчик положения распредвала) и т.д. Вышеуказанные устройства контролируют работу силового агрегата, корректируют подачу воздуха, передают информацию на различные ЭБУ и приборную панель.

Классификация бензиновых ДВС

Кроме вышеуказанной классификации бензиновых автомобильных двигателей по расположению цилиндров они могут различаться и по:

• Способу смесеобразования (инжекторные и карбюраторные).

• По количеству цилиндров (четырех, восьми и т.д.).

• По степени сжатия (высокой или низкой степени).

• С турбонаддувом и без наддува.

• Роторные двигатели. Не получили распространения, употребляются на единичных моделях авто (например, автомобили Mazda серии RX).

Про разновидности компоновок двигателей можно узнать ЗДЕСЬ.

Срок службы и капитальный ремонт бензиновых моторов

Чаще всего эти вопросом задаются автомобилисты, приобретающие машину на вторичном рынке. Никто не хочет «попасть» на скорый капремонт или вовсе на замену мотора в ближайшем будущем. Так какой же ресурс современного бензинового ДВС?

До сих пор на слуху многих автолюбителей информация о старых сверхнадежных импортных двигателях («миллионниках»), которые могут легко отходить до капитального ремонта 300-500 тысяч км, а после него – еще столько же.

Теперь же ситуация в корне поменялась. Современные производители (особенно бюджетных авто) не ставят своей целью максимального увеличения ресурса двигателя выпускаемых моделей. Да и цена автомобилей с такими силовыми агрегатами вышла бы из категории «бюджетной».

К тому же, многие недорогие ДВС не имеют ремонтных запчастей, а значит капитальный из ремонт с расточкой цилиндров, шлифовкой головы и т.д. провести не представляется возможным.

Ресурс современных бензиновых двигателей это 150-300 тысяч, после чего некоторые из них можно «капиталить», а некоторые придется и вовсе — менять.

На продолжительность работы ДВС не последнее влияние оказывает качество технического обслуживания и стиль вождения того или иного водителя (кто-то любит крутить холодный мотор до отсечки, кто-то подолгу греет двигатель на холостых оборотах, что также вредно и т.д.).

Современная тенденция увеличения мощности двигателя без изменения его объема привела к использованию турбонаддува. Небольшой легкий двигатель с турбонагнетателем работает постоянно с повышенной нагрузкой, что способствует его быстрому износу. Стоит понимать, что при прочих равных ресурс атмосферного ДВС выше, чем у такого же, но с турбиной. Роторные двигатели и вовсе служат всего 80-120 тысяч км. Одно можно сказать точно – чем меньше «лошадей» снято с кубического см мотора, тем больше его ресурс.

Устройство двигателя внутреннего сгорания в видео:

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector