Автоматический пуск синхронного двигателя схема
Выбор схемы пуска асинхронных и синхронных двигателей
Выбор простой и надежной схемы пуска имеет большое значение для эксплуатации двигателей и синхронных компенсаторов. Наиболее распространенной в настоящее время является простейшая и вместе с тем наиболее надежная схема прямого пуска от полного напряжения сети, исключение составляют двигатели с очень тяжелыми условиями пуска или очень мощные двигатели и компенсаторы, вызывающие при пуске недопустимые снижения напряжения в сети.
В случаях, когда прямой пуск неприемлем, напряжение, подводимое к двигателю при пуске, снижается включением в цепь статора реактора или, в редких случаях, автотрансформатора. Конструкции всех асинхронных и синхронных двигателей предусматривают возможность асинхронного пуска. С этой целью у синхронных двигателей с частотой вращения до 1500 об/ мин на роторе в явно выраженных полюсах расположена пусковая обмотка в виде замкнутых стержней. Возможность асинхронного пуска турбодвигателей с частотой вращения 3000 об/мин обеспечивается прежде всего токами в бочке неявнополюсного ротора, а также медными клиньями, заложенными в пазы.
Выбор пускового реактора для синхронного двигателя и компенсатора принципиально не отличается от выбора реактора для асинхронного двигателя. Для синхронных двигателей большой мощности в ряде случаев целесообразно применение питания от отдельных трансформаторов (блок-трансформаторов) с мощностью блок-трансформатора, в большинстве случаев соответствующей мощности установленного двигателя. В этом случае за счет отказа от выключателя на стороне двигателя установка оказывается весьма простой. Только при частых тяжелых пусках может потребоваться увеличение мощности трансформатора по условию его нагрева.
Реакторный пуск и пуск при работе по схеме блока двигатель-трансформатор имеет неоспоримые преимущества перед пуском через автотрансформатор. Например, напряжение на двигателе или компенсаторе при пуске через постоянно включенные реактор и трансформатор по мере снижения пускового тока плавно возрастает, и в конце пуска это напряжение незначительно отличается от номинального.
Рис. Схемы прямого пуска синхронных электродвигателей с электромашинными возбудителями постоянного тока:
а — обмотка ротора глухо подключена к якорю возбудителя;
б — включена на разрядный резистор:
в — включена на якорь возбудителя через разрядный резистор.
Поэтому при реакторном пуске шунтирование реактора происходит практически без толчка (см., например, рис., б) в отличие от автотрансформаторного пуска, где приходится принимать специальные меры, усложняющие схему пуска, для ограничения толчка тока при переключении от пускового напряжения на полное напряжение сети.
Требования некоторых трансформаторных заводов об ограничении пускового тока, приводящие к завышению мощности блок-трансформатора, исходя из необходимости ограничения динамических усилий на обмотке, следует считать неоправданными. Согласно ГОСТ обмотка трансформатора должна выдерживать без повреждения токи короткого замыкания на выводах любой из его обмоток при номинальном напряжении на другой. Эти токи заведомо существенно больше токов при пуске двигателя, соизмеримого по мощности с трансформатором. Динамические усилия в трансформаторе, пропорциональные квадрату тока, получаются соответственно значительно меньшими гарантированных.
Практика применения схемы блоков трансформатор-двигатель вполне себя оправдала. При применении электромашинной системы возбуждения, как можно заключить из рассматриваемых выше процессов в этих системах при пуске двигателя (компенсатора), предпочтение следует отдавать схемам глухого подключения возбудителя к ротору двигателя (компенсатора), если это допустимо по условиям пуска. Сопротивление в цепи возбуждения возбудителя при этом должно быть подобрано таким образом, чтобы при номинальной угловой скорости напряжение на двигателе (компенсаторе), отключенном от сети, было равно напряжению сети или несколько больше.
Пуск двигателя (компенсатора) происходит следующим образом: включается главный выключатель, двигатель (компенсатор) разворачивается, возбуждается и втягивается в синхронизм плавно, без толчков и без вмешательства персонала или каких-либо элементов автоматики, дающих команду на возбуждение машины. Эта схема применима для двигателей и компенсаторов, как имеющих возбудитель на одном валу, так и питающихся от отдельно стоящего двигатель-генератора. В последнем случае пуск агрегата возбуждения должен осуществляться одновременно с пуском двигателя или компенсатора замыканием блок-контактов выключателя основного двигателя.
При прямом включении в сеть обмотки статора и глухоподключенном возбудителе схема пуска синхронной машины (рис. а) также проста, как и схема пуска асинхронного двигателя с короткозамкнутым ротором. Проведенные испытания и накопленный опыт эксплуатации вместе с тем показывают, что область применения схемы пуска синхронных двигателей с постоянно подключенным возбудителем ограничивается практически двигателями относительно небольшой мощности, — как правило, не свыше 2000 кВт. Схема непригодна для двигателей, запускающихся с нагрузкой выше 0,4-0,6 номинальной мощности, из-за провала в кривой асинхронного момента в области малых скольжений и малоэффективна для двигателей, у которых контактор возбуждения оказывается необходимым для гашения поля или осуществления схемы ресинхронизации. Например, проведенные исследования показали неприемлимость данной схемы на синхронных двигателях СДМ-20-49-60, 2000 кВт, применяемых для привода шаровых углеразмольных мельниц Ш-50 и Ш-50А на энергоблоках 300 МВт мощных тепловых электростанций. Кривая вращающего момента при пуске этих мельниц имеет резко выраженный пульсирующий характер, в результате чего на вал воздействует знакопеременная нагрузка.
При включении двигателя с глухоподключенным к ротору возбудителем кривая вращающего момента имеет особо неблагоприятный характер, поэтому успешный пуск таких агрегатов оказался возможным только по схеме с включением обмотки ротора на якорь возбудителя через разрядный резистор (рис. в). При прямом пуске механические усилия в лобовых частях обмотки статора асинхронных и синхронных двигателей и компенсаторов возрастают, но, как правило, за счет падения напряжения в сети оказываются меньше тех усилий, которые получаются при близких коротких замыканиях.
Большинство электродвигателей допустимо переводить на прямой пуск без дополнительного усиления креплений лобовых частей обмоток. Однако в отдельных случаях (большие кратности пускового тока при малых снижениях напряжения сети, слабое закрепление лобовых частей обмоток статора) такое усиление может потребоваться. С этой целью можно рекомендовать установку дополнительных дистанционных распорок и взаимную перевязку соседних лобовых частей в местах ранее установленных и дополнительных распорок.
Из практики эксплуатации известны многочисленные случаи применения прямого пуска для асинхронных двигателей с фазным ротором, переделанных на короткозамкнутые или пускаемые без реостата в цепи ротора, а также для двигателей, ранее пускавшихся от автотрансформатора или через реактор. Опыт подтвердил целесообразность перевода этих двигателей на прямой пуск. Пуск без нагрузки двухскоростных электродвигателей следует всегда производить на меньшей угловой скорости. Если необходима работа на большей угловой скорости, то следует после пуска двигателя на меньшей угловой скорости переключить вращающийся двигатель на большую угловую скорость. При таком пуске суммарные потери за время пуска будут иметь минимальное значение.
Автоматическое управление электроприводом
Основная функция автоматического управления электроприводом — запуск электродвигателя, остановка, торможение, реверсирование, поворот на определенный угол механизма в зависимости от времени или пути. В практике управления электроприводами известно большое количество схем, которые отражают многообразие требований, предъявляемых к электроприводу различных производственных машин. Однако различия в схемах часто не являются принципиальными, так как даже самые сложные из них представляют собой сочетание некоторого ограниченного числа стандартных узлов и простейших цепей, связывающих эти узлы.
1. Управление включением асинхронных электродвигателей с короткозамкнутым ротором
Схема управления с помощью магнитного пускателя (рис. 1). Магнитные пускатели широко применяют для пуска асинхронных электродвигателей мощностью до 75 кВт. Они обеспечивают дистанционный пуск, остановку, нулевую защиту и, с помощью теплового реле, защиту от перегрузок двигателя. При нажатии кнопки «Пуск» главные контакты ПМ включают двигатель; блок — контакты ПМ шунтируют кнопку «Пуск»; для отключения нужно нажать кнопку «Стоп».
Схема управления с помощью реверсивного магнитного пускателя (рис. 2). В тех случаях, когда в процессе работы необходимо изменять направление вращения электродвигателя, применяют реверсивные магнитные пускатели. Такой пускатель состоит из двух нереверсивных, помещенных в один кожух и имеющих блокировку (размыкающие контакты Н и В) от возможности одновременного включения главных контактов в цепи двигателя.
Для лучшей блокировки от возможности одновременного включения обеих пускателей применяются кнопки с нормально замкнутыми и нормально разомкнутыми контактами. При нажатии кнопки «Вперед» одновременно размыкаются контакты «Назад» (рис. 3).
Схема управления с динамическим торможением (рис. 4). Для быстрого торможения в обмотку статора подается постоянный ток. При нажатии кнопки «Стоп» отключается контактор П и включается контактор Т. С последним связано маятниковое реле, которое с выдержкой времени размыкает свой размыкающий контакт. Контактор Т отключает питание двигателя постоянным током.
Схема управления с переключением при пуске обмотки со «звезды» на «треугольник» (рис. 5). При нажатии кнопки «Пуск» включается линейный контактор КЛ и получает питание катушка реле времени РВ, размыкающий блок-контакт которого включает катушку контактора К3.
Рис. 1. Схема управления асинхронным электродвигателем при помощи магнитного пускателя
Рис. 2. Схема управления асинхронным электродвигателем при помощи реверсивного магнитного пускателя
Рис. 3. Схема управления реверсивным пускателем с блокировочными кнопками
Рис. 4. Схема управления асинхронным электродвигателем с динамическим торможением
При этом размыкается блок-контакт К3 в цепи катушки КТ. Двигатель разгоняется при включении обмоток цепи в «звезду». Через 5—10 с (в зависимости от установленной выдержки времени) размыкается замыкающий контакт реле времени РВ. Это приводит к отключению контактора К3 и включению контактора КТ. Одновременное включение контакторов К3 и КТ исключается размыкающим блок-контактом К3.
Рис. 5. Схема управления асинхронным электродвигателем с переключением при пуске обмотки статора со «звезды» на «треугольник»
Рис. 6. Электрическая схема управления двухскоростным асинхронным электродвигателем
Схема управления двухскоростным асинхронным электродвигателем (рис. 6). Конструкция многоскоростного асинхронного электродвигателя позволяет изменять число полюсов обмотки статора. Изменение числа пар полюсов меняет скорость вращения асинхронного электродвигателя. Для производственных механизмов, требующих две скорости вращения, отличающиеся в два раза, применяют двухскоростные асинхронные электродвигатели. Нажимая кнопку «Пуск», включают контактор К, который своими главными контактами подготавливает цепь включения статора двигателя. Воздействуя на кнопку
«Пуск медленно», включают контактор 1К, который подключает обмотку статора, соединенную в треугольник. Если необходимо увеличить скорость, нажимают кнопку «Пуск быстро». Образуется замкнутая цепь питания параллельно включенных катушек 2К и 3К. При этом число пар полюсов уменьшается вдвое, и электродвигатель вращается с большей скоростью.
Схема управления реверсивным двухскоростным электродвигателем (рис. 7). Нажатием кнопок «Пуск 1» или «Пуск 2» устанавливают необходимую частоту вращения при соединениях обмоток двигателя в «треугольник» или в «двойную звезду». Контакторы В или Н включаются нажатием кнопок
«Пуск вперед» или «Пуск назад». Двухцепные кнопки позволяют осуществить дополнительную блокировку, исключающую одновременное включение контакторов В, Н и 1К, 2К.
Торможение асинхронного электродвигателя противовключением (рис. 8). При торможении противовключением электродвигатель включается на время торможения в сеть с соединением обмоток статора с противоположным направлением вращения. При этом необходимо, чтобы двигатель отключился от сети в момент достижения скорости вращения, близкой к нулю.
Рис. 7. Схема управления реверсивным двухскоростным электродвигателем
Рис. 8. Торможение асинхронного короткозамкнутого электродвигателя противовключением
Для этого в цепь катушки контактора 2К включены замыкающие контакты реле контроля скорости РС, работающего от вала двигателя. При работе двигателя эти контакты замкнуты, а размыкающие контакты контактора 1К разомкнуты и контактор торможения 2К отключен. В режиме торможения, когда нажата кнопка «Стоп», катушка 1К обесточивается, электродвигатель отключается от сети. Одновременно размыкающий дополнительный контакт 1К замыкается и включает контактор торможения 2К. При достижении скорости, близкой нулю, реле РС срабатывает, его контакт отключает цепь питания контактора 2К и двигатель затормаживается.
Схема управления реверсивным электродвигателем с торможением противовключением и использованием реле контроля скорости (рис. 9). При нажатии кнопок «Вперед» или «Назад» замыкаются соответственно цепи катушек контакторов В или Н, срабатывают их контакты, статор двигателя подключается к сети, ротор начинает вращаться.
Рис. 9. Схема управления реверсивным электродвигателем с торможением противовключением
Одновременно с началом вращения приводится в действие вал реле контроля скорости и замыкаются соответствующие контакты реле РКСВ или РКСН, которые подготавливают цепи катушек контакторов «Вперед» или «Назад» к работе (при работе двигателя в режиме «Вперед» подготавливается к работе цепь катушки контактора
«Назад», и наоборот). При остановке двигателя, когда нажата кнопка «Стоп», разрывается цепь работающей катушки («Вперед» или «Назад»), главные контакты отключают двигатель от сети, а блок-контакты замыкают цепь катушки контактора «Назад» в том случае, когда двигатель работал вращаясь «Вперед», и наоборот. Таким образом, двигатель переключается в реверсивный режим, однако по инерции продолжает вращаться в прежнем направлении, работая в тормозном режиме противовключения. Из-за действия тормозного момента частота вращения ротора постепенно снижается и при достижении частоты, близкой к нулю, контакты реле контроля скорости размыкают цепи катушек контакторов
«Вперед» или «Назад» и отключают статор двигателя от сети.
2. Управление электроприводами с асинхронными электродвигателями с фазным ротором
Схема управления в функции времени (рис. 10). Эта схема является типичной для двигателей длительного режима с использованием маятниковых реле времени. При нажатии кнопки «Пуск» включается контактор Л. При включении контактора Л начинает работать маятниковое реле, которое через заданный промежуток времени включит своими контактами контактор 1У. Далее процесс повторяется. Замыкающий блок-контакт Л (1—2) предназначен для облегчения работы контактов маятникового реле.
Схема управления в функции времени с несколькими реле времени (рис.11).
Рис. 10. Схема управления асинхронным электродвигателем с фазным ротором в функции времени
Асинхронный электродвигатель с фазным ротором пускают с помощью пусковых реостатов, состоящих из нескольких ступеней, включаемых в фазы обмоток ротора.
При нажатии на кнопку «Пуск» катушка магнитного пускателя ПМ получает питание, и электродвигатель включается на полное сопротивление пускового реостата. Одновременно включается реле времени 1РВ, которое через выдержку времени, достаточную для разгона двигателя на этой ступени, включает контактор 1К, и он своими контактами закорачивает первую ступень пускового реостата. Блок-контакты контактора блокируют катушку 1К и отключают реле времени 1РВ.
Включается одновременно с катушкой 1К реле времени 2РВ, которое через заданную выдержку времени включает второй контактор 2К, а он отключает вторую ступень пускового реостата. Третья ступень пускового реостата отключается аналогично.
Необходимо обеспечивать выбор правильных выдержек времени реле 1РВ, 2РВ и 3РВ. Чрезмерно большие выдержки времени затягивают процесс пуска, а заниженные — не обеспечивают разгон до нужной скорости и вызывают повышенные броски тока. При нажатии на кнопку «Стоп» электродвигатель отключается, и все ступени пускового реостата включаются по фазам ротора.
Схема управления в функции тока (рис. 12). В роторную цепь включены катушки токовых реле ускорения 1РУ, 2РУ, 3РУ, настроенные на срабатывание при токах I1РУ, I2РУ, I3РУ. Контактор 1У включается при спаде силы пускового тока в роторной цепи до значения, соответствующего уставке реле 1РУ.
Рис. 11. Электрическая схема управления асинхронным электродвигателем с фазным ротором
При большей силе тока в цепи ротора размыкающий контакт 1РУ будет разомкнут. Реле ускорения 2РУ и 3РУ, контакторы 2У и 3У работают так же. Из-за возможности вибраций размыкающих контактов реле ускорения 1РУ, 2РУ и 3РУ предусмотрено их шунтирование размыкающими блок-контактами 1У, 2У и 3У. Реле блокировки РБ создает выдержку времени, пока сила тока в роторной цепи не достигнет значения, при котором сработает реле ускорения.
Схема управления в функции частоты (рис. 13). Работа этой схемы обеспечивается с помощью частотных реле 1ЧР, 2ЧР и 3ЧР, катушки которых включены в цепь ротора. Магнитный поток реле создается совместным действием магнитодвижущих сил катушки и короткозамкнутого витка (гильзы). При пуске, т.е. при большой частоте переменного тока в роторе двигателя, размагничивающее действие тока, протекающего по витку, будет велико, и магнитный поток реле будет относительно мал. При уменьшении частоты тока в роторе магнитный поток реле возрастает, так как происходит уменьшение тока в короткозамкнутом витке. При каком-то определенном значении частоты якорь притягивается и замыкает контакты реле частоты (1ЧР, 2ЧР и 3ЧР) в цепи контактора ускорения (1У, 2У и 3У). При оживлении током катушки контактора ускорения происходит шунтирование его контактами соответствующей ступени пускового сопротивления, включенного в цепь ротора. Частотные реле должны быть настроены на определенные частоты.
Рис. 12. Схема управления асинхронным электродвигателем с фазным ротором в функции силы тока
Рис. 13. Схема управления асинхронным электродвигателем с фазным ротором в функции частоты
Автоматический пуск синхронного двигателя схема
Синхронный двигатель не может быть пущен в работу простым включением его в сеть. Это можно объяснить следующим образом. Пусть в момент включения двигателя направление питающего тока в обмотках статора соответствует рисунку 5-35, а. В этот момент на неподвижный ротор будет действовать пара сил F, стремящихся повернуть его по часовой стрелке. Через полпериода направление токов в обмотках статора изменится на противоположное (рис. 5-35, б). Так как рогор в силу
своей инертности за это очень короткое время практически остался на месте, то на него уже подействует такая же пара сил стремящаяся повернуть ротор в обратную сторону. Таким образом, при непосредственном включении синхронного двигателя в сеть его ротор не сдвинется с места. Легко видеть, что за полпериода переменного тока ротор должен успевать повернуться на полоборота при одной паре полюсов обмотки статора, для этого его надо предварительно разогнать до необходимой скорости вращения.
Таким образом, необходимость предварительного разгона ротора является характерной особенностью синхронного двигателя.
Механический разгон применяется при пуске двигателей очень малой мощности (вручную) и двигателей очень большой мощности (от специального постороннего двигателя). В этом случае сначала ротор разгоняется до скорости, близкой к синхронной, и включается обмотка возбуждения, а затем включаются обмотки статора в сеть.
У двигателей с так называемым асинхронным пуском в полюсных наконечниках ротора укладываются металлические стержни, соединенные с боков кольцами. Получается своеобразная дополнительная (пусковая) обмотка, подобная «беличьему колесу» асинхронного двигателя. При пуске такого двигателя обмотку возбуждения закорачивают через разрядный резистор, а обмотку статора включают в сеть, при этом ротор начинает разгон так же, как и ротор асинхронного двигателя. После того, как он достигнет наибольшей возможной скорости вращения (примерно 95% синхронной), обмотку возбуждения подключают к источнику постоянного тока. Двигатель автоматически входит в синхронизм, а дополнительная обмотка в полюсных наконечниках как бы автоматически отключается, так как ЭДС индукции в ней при синхронной скорости вращения поля и ротора равна нулю. Для получения большого пускового момента пусковую обмотку (стержни в полюсных наконечниках) изготовляют с большим активным сопротивлением. Закорачивание обмотки возбуждения при асинхронном пуске синхронного двигателя необходимо для предотвращения ее от пробоя в момент пуска. Эта обмотка при пуске создает вращающий момент одинакового направления, что и момент пусковой обмотки.
Для остановки синхронного двигателя сначала уменьшают ток возбуждения до значения, соответствующего минимальному току обмоток статора, затем отключают статор и лишь после этого размыкают цепь возбуждения. Несоблюдение такого порядка (например, отключение обмотки возбуждения раньше отключения обмоток статора) приведет к чрезмерному увеличению тока в обмотке статора и к возможным опасным для целости изоляции перенапряжениям в разомкнутой обмотке возбуждения.
Достоинством синхронного двигателя является строго постоянная скорость вращения, а недостатком — необходимость
применения вспомогательных устройств для автоматического управления, стоимость которых иногда сравнима со стоимостью самого двигателя, некоторые трудности пуска двигателя.
Схема Электрическая Принципиальная Асинхронного Двигателя
Схема используется для привода механизмов, не требующих реверса, длительность торможения которых после отключения двигателя не имеет существенного значения.
И если Вас не затруднит, ответ пишите на xnnn tut.
Поскольку вращающееся магнитное поле отсутствует, то и ротор останется неподвижным, ибо нет сил, приложенных к нему для начала вращения. Для повышения надежности работы релейных контакторных аппаратов, большей частью рассчитанных на низкое напряжение, и для повышения безопасности эксплуатации применяются схемы с питанием цепей управления от источника пониженного напряжения.
Вентилятор напольный, китайский. Ремонт, схема, параметры.
Схемы управления асинхронным двигателем с короткозамкнутым ротором с реверсивным магнитным пускателем.
Трехфазный переменный ток Электрическая сеть трехфазного переменного тока получила наиболее широкое распространение среди электрических систем передачи энергии.
Схема включает блок управления тиристорами БУ и релейно-контактный узел управления. Поскольку вращающееся магнитное поле отсутствует, то и ротор останется неподвижным, ибо нет сил, приложенных к нему для начала вращения.
Двигатель вращается расторможенным.
Тиристоры выполняют роль силовых коммутаторов и, кроме того, легко позволяют осуществлять необходимый темп изменения напряжения на статоре двигателя регулированием угла включения тиристоров. Наиболее часто в станках, установках и машинах применяются три электрические схемы: схема управления нереверсивным двигателем с использованием одного электромагнитного пускателя и двух кнопок «пуск» и «стоп», схема управления реверсивным двигателем с использованием двух пускателей или одного реверсивного пускателя и трех кнопок.
Нетрадиционное подключение асинхронного двигателя.Правда или миф.
Устройство двигателя
В перпендикулярной плоскости, представленной магнитопроводом, вокруг проводника возникают магнитные потоки Ф. По ней проходит переменный синусоидальный ток, имеющий положительные и отрицательные полуволны. Достаточно подать на статор двигателя трехфазное напряжение и двигатель сразу запускается.
В этих схемах вместо установки на вводе рубильников с предохранителями применяют воздушные автоматы. Динамическое торможение, в отличие от торможения противовключением и фрикционного метода, является плавным, мягким торможением.