0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

В каком году придумали ракетный двигатель

7 космических двигателей будущего

Современные ракетные двигатели неплохо справляются с задачей выведения техники на орбиту, но совершенно непригодны для длительных космических путешествий. Поэтому уже не первый десяток лет ученые работают над созданием альтернативных космических двигателей, которые могли бы разгонять корабли до рекордных скоростей. Давайте рассмотрим семь основных идей из этой области.

EmDrive

Чтобы двигаться, надо от чего-то оттолкнуться – это правило считается одним из незыблемых столпов физики и космонавтики. От чего конкретно отталкиваться – от земли, воды, воздуха или реактивной струи газа, как в случае ракетных двигателей, – не так важно.

Хорошо известен мысленный эксперимент: представьте, что космонавт вышел в открытый космос, но трос, связывающий его с кораблем, неожиданно порвался и человек начинает медленно улетать прочь. Все, что у него есть, – это ящик с инструментами. Каковы его действия? Правильный ответ: ему нужно кидать инструменты в сторону от корабля. Согласно закону сохранения импульса, человека отбросит от инструмента ровно с той же силой, с какой и инструмент от человека, поэтому он постепенно будет перемещаться по направлению к кораблю. Это и есть реактивная тяга – единственный возможный способ двигаться в пустом космическом пространстве. Правда, EmDrive, как показывают эксперименты, имеет некоторые шансы это незыблемое утверждение опровергнуть.

Создатель этого двигателя – британский инженер Роджер Шаер, основавший собственную компанию Satellite Propulsion Research в 2001 году. Конструкция EmDrive весьма экстравагантна и представляет собой по форме металлическое ведро, запаянное с обоих концов. Внутри этого ведра расположен магнетрон, излучающий электромагнитные волны, – такой же, как в обычной микроволновке. И его оказывается достаточно, чтобы создавать очень маленькую, но вполне заметную тягу.

Сам автор объясняет работу своего двигателя через разность давления электромагнитного излучения в разных концах «ведра» – в узком конце оно меньше, чем в широком. Благодаря этому создается тяга, направленная в сторону узкого конца. Возможность такой работы двигателя не раз оспаривалась, но во всех экспериментах установка Шаера показывает наличие тяги в предполагаемом направлении.

В числе экспериментаторов, опробовавших «ведро» Шаера, такие организации, как NASA, Технический университет Дрездена и Китайская академия наук. Изобретение проверяли в самых разных условиях, в том числе и в вакууме, где оно показало наличие тяги в 20 микроньютонов.

Это очень мало относительно химических реактивных двигателей. Но, учитывая то, что двигатель Шаера может работать сколь угодно долго, так как не нуждается в запасе топлива (работу магнетрона могут обеспечивать солнечные батареи), потенциально он способен разгонять космические корабли до огромных скоростей, измеряемых в процентах от скорости света.

Чтобы полностью доказать работоспособность двигателя, необходимо провести еще множество измерений и избавиться от побочных эффектов, которые могут порождаться, к примеру, внешними магнитными полями. Однако уже выдвигаются и альтернативные возможные объяснения аномальной тяги двигателя Шаера, которая, в общем-то, нарушает привычные законы физики.

К примеру, выдвигаются версии, что двигатель может создавать тягу благодаря взаимодействию с физическим вакуумом, который на квантовом уровне имеет ненулевую энергию и заполнен постоянно рождающимися и исчезающими виртуальными элементарными частицами. Кто в итоге окажется прав – авторы этой теории, сам Шаер или другие скептики, мы узнаем в ближайшем будущем.

Солнечный парус

Как говорилось выше, электромагнитное излучение оказывает давление. Это значит, что теоретически его можно преобразовывать в движение – например, с помощью паруса. Аналогично тому, как корабли прошлых веков ловили в свои паруса ветер, космический корабль будущего ловил бы в свои паруса солнечный или любой другой звездный свет.

Проблема, однако, в том, что давление света крайне мало и уменьшается с увеличением расстояния от источника. Поэтому, чтобы быть эффективным, такой парус должен иметь очень малый вес и очень большую площадь. А это увеличивает риск разрушения всей конструкции при встрече с астероидом или другим объектом.

Попытки строительства и запуска солнечных парусников в космос уже имели место – в 1993 году тестирование солнечного паруса на корабле «Прогресс» провела Россия, а в 2010 году успешные испытания по пути к Венере осуществила Япония. Но еще ни один корабль не использовал парус в качестве основного источника ускорения. Несколько перспективнее в этом отношении выглядит другой проект – электрический парус.

Электрический парус

Солнце излучает не только фотоны, но также и электрически заряженные частицы вещества: электроны, протоны и ионы. Все они формируют так называемый солнечный ветер, ежесекундно уносящий с поверхности светила около одного миллиона тонн вещества.

Солнечный ветер распространяется на миллиарды километров и ответственен за некоторые природные явления на нашей планете: геомагнитные бури и северное сияние. Земля от солнечного ветра защищается с помощью собственного магнитного поля.

Солнечный ветер, как и ветер воздушный, вполне пригоден для путешествий, надо лишь заставить его дуть в паруса. Проект электрического паруса, созданный в 2006 году финским ученым Пеккой Янхуненом, внешне имеет мало общего с солнечным. Этот двигатель состоит из нескольких длинных тонких тросов, похожих на спицы колеса без обода.

Благодаря электронной пушке, излучающей против направления движения, эти тросы приобретают положительный заряженный потенциал. Так как масса электрона примерно в 1800 раз меньше, чем масса протона, то создаваемая электронами тяга не будет играть принципиальной роли. Не важны для такого паруса и электроны солнечного ветра. А вот положительно заряженные частицы – протоны и альфа-излучение – будут отталкиваться от тросов, создавая тем самым реактивную тягу.

Хотя эта тяга будет примерно в 200 раз меньше, чем таковая у солнечного паруса, проект заинтересовал Европейское космическое агентство. Дело в том, что электрический парус гораздо проще сконструировать, произвести, развернуть и эксплуатировать в космосе. Кроме того, с помощью гравитации парус позволяет также путешествовать к источнику звездного ветра, а не только от него. А так как площадь поверхности такого паруса гораздо меньше, чем у солнечного, то для астероидов и космического мусора он уязвим куда меньше. Возможно, первые экспериментальные корабли на электрическом парусе мы увидим уже в следующие несколько лет.

Ионный двигатель

Поток заряженных частиц вещества, то есть ионов, излучают не только звезды. Ионизированный газ можно создать и искусственно. В обычном состоянии частицы газа электрически нейтральны, но, когда его атомы или молекулы теряют электроны, они превращаются в ионы. В общей своей массе такой газ все еще не имеет электрического заряда, но его отдельные частицы становятся заряженными, а значит, могут двигаться в магнитном поле.

В ионном двигателе инертный газ (обычно используется ксенон) ионизируется с помощью потока высокоэнергетических электронов. Они выбивают электроны из атомов, и те приобретают положительный заряд. Далее получившиеся ионы ускоряются в электростатическом поле до скоростей порядка 200 км/с, что в 50 раз больше, чем скорость истекания газа из химических реактивных двигателей. Тем не менее современные ионные двигатели обладают очень маленькой тягой – около 50–100 миллиньютонов. Такой двигатель не смог бы даже сдвинуться со стола. Но у него есть серьезный плюс.

Большой удельный импульс позволяет значительно сократить расходы топлива в двигателе. Для ионизации газа используется энергия, полученная от солнечных батарей, поэтому ионный двигатель способен работать очень долго – до трех лет без перерыва. За такой срок он успеет разогнать космический аппарат до скоростей, которые химическим двигателям и не снились.

Ионные двигатели уже не раз бороздили просторы Солнечной системы в составе различных миссий, но обычно в качестве вспомогательных, а не основных. Сегодня как о возможной альтернативе ионным двигателям все чаще говорят про двигатели плазменные.

Плазменный двигатель

Если степень ионизации атомов становится высокой (порядка 99%), то такое агрегатное состояние вещества называется плазмой. Достичь состояния плазмы можно лишь при высоких температурах, поэтому в плазменных двигателях ионизированный газ разогревается до нескольких миллионов градусов. Разогрев осуществляется с помощью внешнего источника энергии – солнечных батарей или, что более реально, небольшого ядерного реактора.

Горячая плазма затем выбрасывается через сопло ракеты, создавая тягу в десятки раз большую, чем в ионном двигателе. Одним из примеров плазменного двигателя является проект VASIMR, который развивается еще с 70-х годов прошлого века. В отличие от ионных двигателей, плазменные в космосе еще испытаны не были, но с ними связывают большие надежды. Именно плазменный двигатель VASIMR является одним из основных кандидатов для пилотируемых полетов на Марс.

Термоядерный двигатель

Укротить энергию термоядерного синтеза люди пытаются с середины ХХ века, но пока что сделать это так и не удалось. Тем не менее управляемый термоядерный синтез все равно очень привлекателен, ведь это источник громадной энергии, получаемой из весьма дешевого топлива – изотопов гелия и водорода.

В настоящий момент существует несколько проектов конструкции реактивного двигателя на энергии термоядерного синтеза. Самой перспективной из них считается модель на основе реактора с магнитным удержанием плазмы. Термоядерный реактор в таком двигателе будет представлять собой негерметичную цилиндрическую камеру размером 100–300 метров в длину и 1–3 метра в диаметре. В камеру должно подаваться топливо в виде высокотемпературной плазмы, которая при достаточном давлении вступает в реакцию ядерного синтеза. Располагающиеся вокруг камеры катушки магнитной системы должны удерживать эту плазму от контакта с оборудованием.

Зона термоядерной реакции располагается вдоль оси такого цилиндра. С помощью магнитных полей экстремально горячая плазма проистекает через сопло реактора, создавая огромную тягу, во много раз большую, чем у химических двигателей.

Двигатель на антиматерии

Все окружающее нас вещество состоит из фермионов – элементарных частиц с полуцелым спином. Это, к примеру, кварки, из которых состоят протоны и нейтроны в атомных ядрах, а также электроны. При этом у каждого фермиона есть своя античастица. Для электрона таковой выступает позитрон, для кварка – антикварк.

Античастицы имеют ту же массу и тот же спин, что и их обычные «товарищи», отличаясь знаком всех остальных квантовых параметров. Теоретически античастицы способны составлять антивещество, но до сих пор нигде во Вселенной антивещество зарегистрировано не было. Для фундаментальной науки является большим вопросом, почему его нет.

Но в лабораторных условиях можно получить некоторое количество антивещества. К примеру, недавно был проведен эксперимент по сравнению свойств протонов и антипротонов, которые хранились в магнитной ловушке.

При встрече антивещества и обычного вещества происходит процесс взаимной аннигиляции, сопровождаемый выплеском колоссальной энергии. Так, если взять по килограмму вещества и антивещества, то количество выделенной при их встрече энергии будет сопоставимо со взрывом «Царь-бомбы» – самой мощной водородной бомбы в истории человечества.

Причем значительная часть энергии при этом выделится в виде фотонов электромагнитного излучения. Соответственно, возникает желание использовать эту энергию для космических перемещений путем создания фотонного двигателя, похожего на солнечный парус, только в данном случае свет будет генерироваться внутренним источником.

Но чтобы эффективно использовать излучение в реактивном двигателе, необходимо решить задачу создания «зеркала», которое было бы способно эти фотоны отразить. Ведь кораблю каким-то образом надо оттолкнуться, чтобы создать тягу.

Никакой современный материал попросту не выдержит рожденного в случае подобного взрыва излучения и моментально испарится. В своих фантастических романах братья Стругацкие решили эту проблему путем создания «абсолютного отражателя». В реальной жизни ничего подобного пока сделать не удалось. Эта задача, как и вопросы создания большого количества антивещества и его длительного хранения, – дело физики будущего.

Кто изобрёл ракету?

Небо всегда манило человека. С древних времён он изобретал всякого рода приспособления, чтобы оторваться от земли и хотя бы немного приблизиться к нему.

Согласно сохранившимся источникам ещё в Греции во времена до нашей эры философ Тарентский Архит с помощью пара поднимал в воздух и перемещал птицу, сделанную из дерева.

И всё же начало развития ракетостроения принято считать с того момента, когда в Древнем Китае изобрели порох.

Небо зовёт

Порох в Поднебесной шёл, в первую очередь, на изготовления фейерверков, которые демонстрировались только на императорских балах. Но именно вытянутая форма капсулы петарды и подтолкнула лучшие умы того времени к изобретению первых, пусть и примитивных, но всё же летательных аппаратов.

Большинство первых «полётов» заканчивались, как правило, трагично. Например, один из изобретателей Поднебесной пытался подняться в небо, прикрепив небольшие ракеты к воздушному бумажному змею. Буквально через несколько минут полёта он вместе со своим реактивным змеем взорвался.

А вот Лагари Челеби из Турции первый полёт удалось пережить, он не только взлетел, но и благополучно спланировал на землю с помощью двух огромных крыльев. Это произошло уже в XV веке.

«И залпы тысячей орудий слились в протяжный вой…»

Как и большинство великих изобретений человечества, ракетостроение своим стремительным развитием обязано военным. Одно из первых применений ракет в качестве оружия произошло в конце XVIII века, во время колонизаторских сражений британцев.

Сначала их пытались использовать индийские солдаты. Неразорвавшиеся образцы англичане успешно усовершенствовали и тоже стали применять в военных целях. Сейчас это первое ракетное оружие можно увидеть в британском музее.

А свой ум лучше

Само название летательного аппарата – «ракета» произошло от итальянского слова «rocchetta», которое означает маленькое веретено. Идея развивать его движущую силу за счет отделения одной или нескольких его частей выдвигалась учеными Бельгии ещё в XVI веке, но дальше идеи дело у бельгийцев не пошло.

Цельную теорию многоступенчатой ракеты разработал российский учёный К.Э. Циолковский в 1903 г. Он доказал, что ракета, движение которой развивается в результате сброса одной, а то и нескольких ступеней, может работать и в безвоздушном пространстве, то есть в космосе.

Покорение высоты

Настоящим прорывом в развитии ракетостроения стала разработка ракетного двигателя на жидком топливе, автором которой в 1926 году стал Роберт Годдард из США.

И хотя его ракета пролетела всего 46 метров, а высота её полёта составила 12 метров, этот пуск тоже стал одним из знаковых событий в стремлении человечества к космосу.

В 1936 году уже наша отечественная ракета поднялась на высоту пять километров. Это стало возможным опять-таки благодаря стремительному развитию военной науки и промышленности, а если конкретно, — экспериментальным разработкам зенитного орудия, прообраза знаменитой «Катюши».

Ну а конструктора ракеты, которая в 1957 году впервые отправила в космос спутник Земли, представлять не нужно. Недаром советского учёного С. П. Королева называют отцом космонавтики.

И гений – парадоксов друг

Современные межконтинентальные, ракеты, транспортирующие на околоземную орбиту космические летательные аппараты, — все они обязаны своим существованием смелости мысли первых отчаянных изобретателей и экспериментаторов, человеческому гению инженеров и учёных. Их имена:

  • Лагари Челеби;
  • Роберт Годдард;
  • Герман Оберт;
  • Константин Циолковский;
  • Сергей Королев
    навеки вписаны в историю освоения космоса.

Электрический ракетный двигатель

Электрический ракетный двигатель (ЭРД) — ракетный двигатель, принцип работы которого основан на преобразовании электрической энергии в направленную кинетическую энергию частиц [1] . Также встречаются названия, включающие слова реактивный и движитель.

Комплекс, состоящий из набора ЭРД, системы хранения и подачи рабочего тела (СХиП), системы автоматического управления (САУ), системы электропитания (СЭП), называется электроракетной двигательной установкой (ЭРДУ).

Содержание

[править] Эволюция ЭРД

В своей истории электрический ракетный двигатель постепенно увеличивал мощность, пройдя путь от ионного двигателя через холловский двигатель к МПД двигателю. Тяга увеличилась с 20-250мН до 2,5-25 Н, потребляемая мощность с 1-7 кВт до 100—500 кВт, а применение от главного тягового двигателя небольшой автоматической космической станции до главного тягового двигателя для тяжелых грузовых и пилотируемых космических кораблей.

[править] Сравнение с химическими ракетами

Различие между электрическими и химическими двигатели показано на рисунке № 2. Электрические двигатели имеют малую тягу по сравнению с химическими ракетами. Однако химические двигатели расходуют огромное количество топлива и поэтому работают только короткое время. Электрические же ракетные двигатели могут работать очень долго и за большое время способны разогнать космический аппарат до приличных скоростей. Поэтому электрические ракетные двигатели лучше всего подходят на медленные путешествия на большие расстояния, а химические ракетные двигатели — на быстрые перелеты на короткие расстояния.

Говоря другими словами электрические ракетные двигатели имеют более высокую Δv — приращение скорости за то же количество топлива. Поэтому хотя химические ракеты и имеют большую тягу, но это преимущество достигается за счет огромного расхода топлива. Причина связана с тем, что скорость истечения топлива у электрических ракетных двигателей намного выше по сравнению с химическими ракетами. А скорость истечения топлива в свою очередь определяет его удельную эффективность — получаемую энергию на единицу массы.

В общем химический ракетный двигатель можно сравнить со спринтером, пробегающим 100 метров со скоростью 10 м/с, а электрический ракетный двигатель — с марафонцем, пробегающим 40 километров со скоростью скажем 1 м/с. Правда тут есть один нюанс. В космосе нет силы трения и гравитации, поэтому любое движение является равноускоренным. Если человек первую секунду бежал со скоростью 1 м/с, то во вторую секунду его скорость уже составит 2 м/с. при тех же усилиях бегуна.

Стоит отметить, что электрический ракетный двигатель можно применять только в космосе, так как его одномоментная сила тяги намного слабее гравитации Земли. Для стартов пока нет альтернативы химическому ракетному двигателю с его способностью развить мощную тягу за считанные секунды.

[править] Введение

Идея использовать для ускорения рабочего тела (РТ) в реактивных двигателях электрическую энергию возникла практически в начале развития ракетной техники. Известно, что такую идею высказывал К. Э. Циолковский. В 1916—1917 годах Р. Годдард провёл первые эксперименты, а в 30-х годах XX столетия в СССР под руководством В. П. Глушко был создан один из первых действующих ЭРД.

С самого начала предполагалось, что разнесение источника энергии и ускоряемого вещества позволит обеспечить высокую скорость истечения РТ, а также и меньшую массу космического аппарата (КА) за счёт снижения массы хранимого рабочего тела. Действительно, в сравнении с другими ракетными двигателями ЭРД позволяют значительно увеличить срок активного существования (САС) КА, существенно при этом снизив массу двигательной установки (ДУ), что, соответственно, позволяет увеличить полезную нагрузку, либо улучшить массо-габаритные характеристики самого КА.

Расчёты показывают, что использование ЭРД позволит сократить длительность полёта к дальним планетам (в некоторых случаях даже сделать такие полёты возможными) или, при той же длительности полёта, увеличить полезную нагрузку.

Начиная с середины 60-х годов в СССР и в США начались натурные испытания ЭРД, а в начале 70-х ЭРД стали использоваться как штатные ДУ.

В настоящее время ЭРД широко используются как в ДУ спутников Земли, так и в ДУ межпланетных КА.

[править] Классификация ЭРД

Классификация ЭРД не устоялась, однако в русскоязычной литературе обычно принято классифицировать ЭРД по преобладающему механизму ускорения частиц. Различают следующие типы двигателей:

ЭТД, в свою очередь, делятся на электронагревные (ЭНД) и электродуговые (ЭДД) двигатели.

Электростатические делятся на ионные (в том числе коллоидные) двигатели (ИД, КД) — ускорители частиц в униполярном пучке, и ускорители частиц в квазинейтральной плазме. К последним относятся ускорители с замкнутым дрейфом электронов и протяжённой (УЗДП) или укороченной (УЗДУ) зоной ускорения. Первые принято называть стационарными плазменными двигателями (СПД), также встречается (всё реже) наименование — линейный холловский двигатель (ЛХД), в западной литературе именуется холловским двигателем. УЗДУ обычно называются двигателями с ускорением в анодном слое (ДАС).

К сильноточным (магнитоплазменным, магнитодинамическим) относят двигатели с собственным магнитным полем и двигатели с внешним магнитным полем (например, торцевой холловский двигатель — ТХД).

Импульсные двигатели используют кинетическую энергию газов, появляющихся при испарении твёрдого тела в электрическом разряде.

В качестве рабочего тела в ЭРД могут применяться любые жидкости и газы, а также их смеси. Тем не менее, для каждого типа двигателей существуют рабочие тела, применение которых позволяет достигнуть наилучших результатов. Для ЭТД традиционно используется аммиак, для электростатических — ксенон, для сильноточных — литий, для импульсных — фторопласт.

Недостатком ксенона является его стоимость, обусловленная небольшим годовым производством (менее 10 тонн в год во всём мире), что вынуждает исследователей искать другие РТ, похожие по характеристикам, но менее дорогие. В качестве основного кандидата на замену рассматривается аргон. Он также является инертным газом, но, в отличие от ксенона имеет большую энергию ионизации при меньшей атомной массе. Энергия, затраченная на ионизацию на единицу ускоренной массы, является одним из источников потерь КПД.

[править] Краткие технические характеристики

ЭРД характеризуются малым массовым расходом РТ и высокой скоростью истечения ускоренного потока частиц. Нижняя граница скорости истечения примерно совпадает с верхней границей скорости истечения струи химического двигателя и составляет около 3 000 м/с. Верхняя граница теоретически неограничена (в пределах скорости света), однако для перспективных моделей двигателей рассматривается скорость, не превышающая 200 000 м/с. В настоящее время для двигателей различных типов оптимальной считается скорость истечения от 16 000 до 60 000 м/с.

В связи с тем, что процесс ускорения в ЭРД проходит при низком давлении в ускорительном канале (концентрация частиц не превышает 10 20 частиц/м³), плотность тяги довольно мала, что ограничивает применение ЭРД: внешнее давление не должно превышать давление в ускорительном канале, а ускорение КА очень мало (десятые или даже сотые g). Исключением из этого правила могут быть ЭДД на малых КА.

Электрическая мощность ЭРД колеблется от сотен ватт до мегаватт. Применяемые в настоящее время на КА ЭРД имеют мощность от 800 до 2 000 Вт.

ЭРД характеризуются не очень высоким КПД — от 30 до 60 %.

[править] История

В 1964 в системе ориентации советских КА «Зонд-2» в течение 70 минут функционировали 6 эрозионных импульсных РД, работавших на фторопласте; получаемые плазменные сгустки имели температуру

30 000 К и истекали со скоростью до 16 км/с (конденсаторная батарея имела ёмкость 100 мкф, рабочее напряжение составляло

1 кВ). В США подобные испытания проводились в 1968 на КА «ЛЭС-6». В 1961 пинчевый импульсный РД американской фирмы «Рипаблик авиэйшен» (англ. Republic Aviation ) развил на стенде тягу 45 мН при скорости истечения 10—70 км/с.

1 октября 1966 года трёхступенчатой геофизической ракетой 1Я2ТА была запущена на высоту 400 км автоматическая ионосферная лаборатория «Янтарь-1» для исследования взаимодействия реактивной струи электрического ракетного двигателя (ЭРД), работавшего на аргоне, с ионосферной плазмой. Экспериментальный плазменно-ионный ЭРД был впервые включён на высоте 160 км, и в течение дальнейшего полёта было проведено 11 циклов его работы. Была достигнута скорость истечения реактивной струи около 40 км/сек. Лаборатория «Янтарь» достигла заданной высоты полёта 400 км, полёт продолжался 10 минут, ЭРД работал устойчиво и развил проектную тягу в пять грамм. О достижении советской науки научная общественность узнала из сообщения ТАСС.

Во второй серии экспериментов использовали азот. Скорость истечения была доведена до 120 км/сек. В 1966—1971 запущено четыре подобных аппарата (по другим данным до 70 года и шесть аппаратов).

Осенью 1970 года успешно выдержал испытания в реальном полёте прямоточный воздушный ЭРД. В октябре 1970 года на XXI конгрессе Международной астрономической федерации советские учёные — профессор Георгий Львович Гродзовский, кандидаты технических наук Ю. Данилов и Н. Кравцов, кандидаты физико-математических наук М. Маров и В. Никитин, доктор технических наук В. Уткин — доложили об испытаниях двигательной установки, работающей на воздухе. Зарегистрированная скорость реактивной струи достигла 140 км/с.

В 1971 в системе коррекции советского метеорологического спутника «Метеор» работали два стационарных плазменных двигателя разработки Института атомной энергии им. И. В. Курчатова и ОКБ Факел, каждый из которых при мощности электропитания

0,4 кВт развивал тягу 18—23 мН и скорость истечения свыше 8 км/с. РД имели размер 108×114×190 мм, массу 32,5 кг и запас РТ (сжатый ксенон) 2,4 кг. Во время одного из включений один из двигателей проработал непрерывно 140 ч. Эта электрореактивная двигательная установка изображена на рисунке.

Также электроракетные двигатели используются в миссии Dawn. Планируется использование в проекте BepiColombo.

[править] Перспективы

Хотя электроракетные двигатели имеют малую тягу по сравнению с жидкотопливными ракетами, они способны работать длительное время и осуществлять медленные полеты на большие расстояния (например к внешним планетам Солнечной системы) [2] . Если же говорить о межзвездном полете, то электроракетный двигатель с ядерным реактором имеет небольшое ускорение, поэтому потребуются столетия для достижения нужной скорости, что позволяет использовать его только в кораблях поколений [3] [4] .

В настоящее время многими странами исследуются вопросы создания пилотируемых межпланетных кораблей с ЭРДУ. Существующие ЭРД не являются оптимальными для использования в качестве маршевых двигателей для таких кораблей, в связи с чем в ближайшем будущем следует ожидать возобновления интереса к разработке сильноточных ЭРД на жидкометаллическом РТ (висмут, литий, калий, цезий) с электрической мощностью до 1 МВт, способных длительно работать при токах силой до 5—10 кА. Эти РД должны развивать тягу до 20—30 Н и скорость истечения 20—30 км/с при КПД 30 % и более. В 1975 г. подобный РД испытан в СССР на ИСЗ «Космос-728» (РД электрической мощностью 3 кВт, работающий на калии, развил скорость истечения

Кроме России и США исследованиями и разработкой ЭРД занимаются также в Великобритании, ФРГ, Франции, Японии, Италии. Основные направления деятельности этих стран: ИД (наиболее успешны разработки Великобритании и Германии, особенно — совместные); СПД и ДАС (Япония, Франция); ЭТД (Франция). В основном эти двигатели предназначены для ИСЗ.

Электроракетный двигатель принцип работы

Электрический ракетный двигатель (электроракетный двигатель)

Электрический ракетный двигатель (электроракетный двигатель) – ракетный двигатель, принцип работы которого основан на преобразовании электрической энергии в направленную кинетическую энергию частиц.

Электроракетный двигатель, сущность, устройство, принцип работы

Принцип работы основан на преобразовании электрической энергии в направленную кинетическую энергию частиц.

В таких двигателях в качестве источника энергии для создания тяги используется электрическая энергия бортовой энергоустановки космического аппарата.

Электрические ракетные двигатели имеют исключительно высокий удельный импульс, составляющий до 100 км/с и более. Однако большой потребный расход энергии (1-100 кВт/Н тяги) и малое отношение тяги к площади поперечного сечения реактивной струи (не более 100 кН/м2) ограничивают максимальную целесообразную тягу ЭРД несколькими десятками ньютон. Недостатком электрических ракетных двигателей также является малое ускорение космического аппарата, которое составляет десятые или даже сотые доли ускорения свободного падения (g), что ограничивает применение таких двигателей только космическим пространством. Поэтому для запуска космического аппарата с Земли к другим планетам необходимо комбинировать обычные химические ракетные двигатели с электрическими.

История возникновения электрических ракетных двигателей

Впервые идею использования электрической энергии высказывал К.Э. Циолковский в 1912 г. В статье «Исследование мировых пространств реактивными приборами» (Вестник воздухоплавания, №9, 1912 г.) он писал: «… с помощью электричества можно будет придавать громадную скорость выбрасываемым из реактивного прибора частицам…»

В 1916-1917 гг. Р. Годдард экспериментально подтвердил реальность осуществления этой идеи.

В 1929-1933 гг. под руководством В. П. Глушко был создан один из первых действующих электрических ракетных двигателей. Впоследствии на некоторое время работы по разработке ЭРД были прекращены.

Они возобновились только в конце 1950-х – начале 1960-х гг. и уже к началу 1980-х гг. в СССР и США испытано около 50 различных конструкций электрических ракетных двигателей в составе космических аппаратов и высотных атмосферных зондов.

В настоящее время ЭРД широко используются в космических аппаратах: как в спутниках, так и в межпланетных космических аппаратах.

Классификация, типы и виды электрических ракетных двигателей

По принципу действия:

– электротермические (электронагревные) ракетные двигатели,

– электростатические ракетные двигатели,

– электромагнитные ракетные двигатели.

Для каждого типа и вида двигателя используется определенное рабочее тело: газ, жидкость или твердое вещество.

По режиму работы различают стационарные и импульсные электромагнитные ракетные двигатели.

Стационарные электромагнитные ракетные двигатели работают непрерывно. Их разновидностями являются холловские двигатели (двигатели на основе эффекта Холла) и МГД-двигатели.

Импульсные электромагнитные ракетные двигатели работают в режиме кратковременных импульсов длительностью от нескольких микросекунд до нескольких миллисекунд. Варьируя частоту включений двигателя и длительность импульсов, можно получать любые необходимые значения суммарного импульса тяги.

Разновидностями импульсных электромагнитных ракетных двигателей являются пинчевые двигатели, двигатели с бегущей волной, коаксильные и линейные (шинные, рельсовые) двигатели.

На базе указанных основных типов (классов) ЭРД создаются различные промежуточные и комбинированные варианты, в наибольшей степени отвечающих конкретным условиям использования.

Как работают ракетные двигатели?

Освоение космоса — самое удивительное из мероприятий, когда-либо проводимых человечеством. И большую часть удивления составляет сложность. Освоение космоса осложняется массой проблем, которые нужно решить и преодолеть. Например, безвоздушное пространство, проблема с температурой, проблема повторного входа в атмосферу, орбитальная механика, микрометеориты и космический мусор, космическая и солнечная радиация, логистика в условиях невесомости и другое. Но самая сложная проблема — это просто оторвать космический корабль от земли. Здесь не обойтись без ракетного двигателя, поэтому в этой статье мы рассмотрим именно это изобретение человечества.

С одной стороны, ракетные двигатели настолько просто устроены, что за небольшую копейку вы сможете построить ракету самостоятельно. С другой стороны, ракетные двигатели (и их топливные системы) настолько сложны, что доставкой людей на орбиту, по сути, занимаются только три страны мира.

Когда люди задумываются о двигателе или моторе, они думают о вращении. К примеру, бензиновый двигатель автомобиля производит энергию вращения, чтобы двигать колеса. Электродвигатель производит энергию вращения для движения вентилятора или диска. Паровой двигатель делает то же самое, чтобы вращать паровую турбину.

Ракетные двигатели принципиально отличаются. Ракетные двигатели — это реактивные двигатели. Основной принцип движения ракетного двигателя — это знаменитый принцип Ньютона, «на каждое действие есть равное противодействие». Ракетный двигатель выбрасывает массу в одном направлении, а благодаря принципу Ньютона движется в противоположном направлении.

Ракетный двигатель, как правило, выбрасывает массу в форме газа под высоким давлением. Двигатель выбрасывает массу газа в одном направлении, чтобы получить реактивное движение в противоположном направлении. Масса идет от веса топлива, которое сгорает в двигателе ракеты. Процесс горения ускоряет массы топлива так, что они выходят из сопла ракеты на высокой скорости. Тот факт, что топливо превращается из твердого тела или жидкости в процессе сгорания, никак не меняет его массу. Если вы сожжете килограмм ракетного топлива, вы получите килограмм выхлопа в виде горячих газов на высокой скорости. Процесс сжигания ускоряет массу.

«Сила» ракетного двигателя называется тягой. Тяга измеряется в ньютонах в метрической системе и «фунтах тяги» в США (4,45 ньютона тяги эквивалентны одному фунту тяги). Фунт тяги — это количество тяги, необходимое для удержания 1-фунтового объекта (0,454 кг) неподвижным относительно силы тяжести Земли. Ускорение земной гравитации составляет 9,8 м/с².

Одной из забавных проблем ракет является то, что топливный вес, как правило, в 36 раз больше полезной нагрузки. Потому что помимо того, что двигателю нужно поднимать вес, этот же вес и способствует собственному подъему. Чтобы вывести крошечного человека в космос, нужна огромная ракета и много-много топлива.

Обычная скорость для химических ракет составляет от 8000 до 16 000 км/ч. Топливо горит около двух минут и вырабатывает 3,3 миллиона фунтов тяги на старте. Три основных двигателя космического шаттла, например, сжигают топливо в течение восьми минут и вырабатывают около 375 000 фунтов тяги каждый в процессе горения.

Будущее ракетных двигателей

Мы привыкли видеть химические ракетные двигатели, которые сжигают топливо для производства тяги. Но есть масса других способов для получения тяги. Любая система, которая способна толкать массу. Если вы хотите ускорить бейсбольный мячик до невероятной скорости, вам нужен жизнеспособный ракетный двигатель. Единственная проблема при таком подходе — это выхлоп, который будет тянуться через пространство. Именно эта небольшая проблема приводит к тому, что ракетные инженеры предпочитают газы горящим продуктам.

Многие ракетные двигатели крайне малы. К примеру, двигатели ориентации на спутниках вообще не создают большую тягу. Иногда на спутниках практически не используется топливо — газообразный азот под давлением выбрасывается из резервуара через сопло.

Новые конструкции должны найти способ ускорить ионы или атомные частицы до высокой скорости, чтобы сделать тягу более эффективной. А пока будем пытаться делать электромагнитные двигатели и ждать, что там еще выкинет Элон Маск со своим SpaceX.

Журнал «Все о Космосе»

Какие бывают двигатели у космических аппаратов и в чем их сильные и слабые стороны

Двигатель — едва ли не самое важное в космическом аппарате. Без возможности активно маневрировать, набирать скорость и тормозить нельзя выбраться дальше околоземной орбиты, да и на орбите приходится бороться с различными уводящими аппарат в сторону эффектами. За прошедшие с момента запуска первого спутника почти шестьдесят лет технологии заметно шагнули вперед, и одними ракетами все давно не ограничивается.

Ракетный двигатель

Принцип работы ракетного двигателя известен нам как минимум с 30-х годов прошлого века, а как максимум — со времен Древнего Китая. Конечно, бамбуковые ракеты, движимые энергией горения черного пороха, для космоса непригодны, но вот уже двигатели американца Роберта Годдарда (1926 год), россиянина Фридриха Цандера (СССР, рубеж 1920-х и 1930-х годов) или немца Германа Оберта (1930 год) работали на паре «жидкое топливо + окислитель» и уже имели узлы, без которых не обходится любой современный ракетный двигатель.

Ракетный двигатель создает тягу при сжигании топлива: в соответствии с законом сохранения импульса движимый им аппарат приобретает импульс, равный импульсу выходящих в сопло продуктов сгорания. Отсюда можно определить рецепт увеличения тяги: сжигать больше топлива или добиться более высокой скорости реактивной.

Установленный в двигателе турбонасосный агрегат раскручивает лопасти насосов при помощи жаростойкой газовой турбины, а насосы закачивают топливо и окислитель в камеру сгорания. Большой поток топлива и окислителя приводит к интенсивному сгоранию и выбросу мощной струи раскаленных газов. Теоретически при сжигании керосина в кислороде можно получить температуру до 3500 °С и добиться истечения струи со скоростью около трех километров в секунду — практические результаты сейчас близки к теории. Пары водород-кислород или гидразин — тетраоксид азота, два других часто используемых сочетания, дают сопоставимые значения, и это объясняет как достоинства, так и недостатки традиционных ракет.

Ракетный двигатель RS-68, работающий на паре водород-кислород во время испытаний. Обратите внимание на сложную конструкцию над соплом. Стоимость больших ракетных двигателей доходит до $ 10 млн

Достоинством этого двигателя является его мощность, достигаемая сжиганием огромного объема топлива, ограниченная только размерами камеры сгорания. На американском «Сатурне-V» стояли двигатели F1, которые сжигали в единственной камере свыше полутора тонн кислорода и почти тонну керосина ежесекундно. Такое потребление давало тягу более 700 тонна-сил, а пять F1 с успехом доставляли ракету к Луне. Созданные позже советские РД-170 уступали по объему камеры сгорания, но зато камер было сразу четыре — их планировали использовать на сверхтяжелой ракете «Энергия» (носитель «Бурана»), которая могла бы вывести в космос до ста тонн полезной нагрузки.

По сей день начальный этап любого космического полета, хоть на геостационарную орбиту, хоть к Плутону, совершается при помощи ракетных двигателей: ни один другой даже близко не приближается к требуемым для развития космической скорости. Но где достоинства, там и недостатки

Небольшой ракетный двигатель — советский КДУ-414. Его длина составляет всего 70 сантиметров и он дает тягу около 200 килограммов; использовался с середины 1960-х годов для коррекции орбиты космических аппаратов

Экстремальные условия в камере сгорания приводят к тому, что даже многочисленные инженерные хитрости вроде охлаждения стенок подаваемым топливом или отсекания от них основной горячей струи более «холодной» струей от турбонасоса не позволяют добиться сколько-нибудь продолжительной работы в сочетании с высокой надежностью. А внедрение в сплавы жаростойких добавок вплоть до металлов платиновой группы все равно не гарантирует успеха запуска ракеты: доля аварий у всех основных производителей в мире колеблется в районе нескольких процентов. Представьте, какова была бы авиация, если бы даже каждый сотый рейс заканчивался взрывом или падением самолета!

Изготовленные уже не для старта с Земли, а для полета в безвоздушном пространстве ракетные двигатели имеют не столь экстремальные параметры, но все равно регулярно подводят. Российские разгонные блоки ДМ и «Фрегат», например, имеют долю отказов в районе от одного до трех процентов. Последняя авария произошла в 2014 году, когда «Фрегат» вывел на нецелевую орбиту два спутника европейской навигационной системы Galileo. Хотя нельзя сказать, что российские блоки как-то особо ненадежны: американский Centaur отказывал больше десятка раз на двести с лишним запусков.

Статистическая оговорка: как можно заметить, многие числа нами указываются приблизительно. Это обусловлено тем, что говорить о точных значениях зачастую нельзя. Скажем, разгонные блоки многих семейств производятся с 1960-х годов с целым рядом модификаций, и обобщать статистику запусков за все время затруднительно. Тяга двигателя немного зависит от атмосферного давления, а температура сгорания топлива — от его состава и режима работы двигателя.

Ракетные двигатели крайне неэкономичны. Их КПД уступает паровозному: мы вынуждены тратить гигантские запасы горючего с окислителем для достижения цели. Хуже того, наши затраты нелинейно растут с увеличением дельта-V, той скорости, которую должен приобрести наш космический аппарат для достижения цели. Чтобы попасть к Луне и вернуться, потребовался уже упоминавшийся «Сатурн-V»; полет же к звездам или хотя бы к Облаку Оорта за разумное время потребует ракет, габариты которых выходят как за пределы возможностей современных технологий, так и за рамки здравого смысла.

Ионы и плазма

Если снова обратиться к закону сохранения импульса, то становится ясно: чем быстрее покидает двигатель струя вещества, тем он эффективнее. Получить скорость струи свыше нескольких километров в секунду сжиганием чего-либо невозможно, однако двигатели, работающие на частицах со скоростью в десятки км/с, уже существуют. Они — ионные.

Суть ионного двигателя заключается в том, что сначала газ превращается в плазму, смесь положительно заряженных ионов с электронами. Далее заряженные частицы разгоняются электромагнитным полем и выбрасываются наружу — таким образом удается разом обойтись без экстремальных условий внутри двигателя и превзойти скорость истечения продуктов даже самых «жестких» химических реакций вроде сжигания лития в атмосфере фтора.

Правда, назвать ионные двигатели идеальными тоже нельзя. При более-менее достижимой на сегодня электрической мощности — а это, как правило, не более киловатта — их тяга не превышает считанных граммов. Двестикиловаттный VASIMIR, который одно время планировали поставить на МКС, выдавал на испытаниях в вакуумной камере около пяти ньютонов тяги — этого было бы достаточно для отрывания от Земли груза в полкилограмма. Даже в предположении, что ионному двигателю не мешает работать атмосфера, поднять с космодрома хотя бы свой собственный вес такое устройство не сможет.

Испытания одного из первых плазменных двигателей состоялись уже в 1961 году. Ионные двигатели впервые полетели в космос в 1964-м, а сегодня ионные и плазменные установки ставятся на многие спутники для удержания на заданной орбите.

Но в дальнем космосе этого и не требуется. Там важна экономичность и надежность — то, чем как раз отличаются ионные двигатели. Многие из них способны буквально годами работать бесперебойно, а в пересчете на килограмм потраченного рабочего тела (говорить «топливо» уже не очень корректно, ведь ничего не сжигается) они дают намного больший результат. Аппараты на ионных двигателях поначалу отстают от взявших быстрый старт ракетных аналогов, но ракетного топлива хватает от силы на несколько часов, а ионный «мотор» растягивает запас инертного газа в баке на годы. Медленно, буквально по миллиметру в секунду, прибавляя скорость, «черепаха» на ионной тяге сначала догоняет, а потом и перегоняет ракетного «зайца» с опустевшими баками.

Аппарат «Рассвет», летавший к Весте и Церере, японская миссия «Хаябуса» по доставке на Землю образца астероидного грунта, российские двигатели для геостационарных спутников — все это далеко не полный перечень ионных и плазменных установок в космосе. Плазменные представляют собой вариант ионных: в них ионизированный газ ускоряется не при помощи электродов, а выходит наружу с большой скоростью после разогрева тем или иным способом.

Существуют проекты мощных ионных или плазменных двигателей с электропитанием от большого массива солнечных батарей или ядерного реактора. Возможно, уже в ближайшие десятки лет мы получим установки, способные в разы сократить сроки перелетов между планетами. Разработка двигательной установки с ядерным реактором ведется в России силами предприятий Росатома и, по сообщениям осени 2016 года, может быть готова к испытаниям уже к концу 2018 года. Подобным же проектом занимаются и в Китае.

А еще есть проекты плазменных двигателей, которые будут использовать в качестве рабочего тела водяной пар. Воду можно получать, используя астероиды или лунный грунт. Это разом решит проблему и дозаправки вдали от Земли, и дороговизны выведения на орбиту. Упомянутые выше ограничения ракетных двигателей ведут к тому, что сегодня килограмм груза даже на самой низкой орбите стоит тысячи долларов, а доставка на геостационарную орбиту сопоставима по цене с изготовлением такого же по массе спутника из чистого золота!

Паруса

Идеальный двигатель должен по возможности весить как можно меньше, иметь нулевой расход топлива и полное отсутствие частей, которые могут сломаться во время работы. И подобные устройства существуют. Речь о парусах, призванных либо поймать поток заряженных частиц от Солнца, либо потянуть космический аппарат вперед под давлением света. В первом случае парус предполагается делать из тонких проволочек, создающих вокруг себя электрическое поле, а во втором случае сгодится любой легкий и блестящий материал вроде металлизированного пластика.

Солнечный парус в испытательной камере на Земле.

Примечательно, что концепция солнечного паруса если не опередила появление жидкостного ракетного двигателя, то возникла примерно тогда же. В 1900 году Петр Лебедев впервые исследовал эффект давления солнечного света, а в 1920-х идея использовать это явление для движения космических аппаратов была озвучена Фридрихом Цандером. Тем самым, который разработал советский жидкостный ракетный двигатель.

На практике «солнечным парусником» стал японский аппарат IKAROS в 2010 году, за ним последовал собранный американским «Планетарным сообществом» зонд Light Sail-1. Два других экспериментальных спутника, Cosmos-1 и NanoSail-D, пытались запустить в 2005 и 2008 годах, но оба раза подвели ракеты — один раз российская «Волна», а во второй — уже Falcon 1 Илона Маска.

Кроме того, эффект давления света использовал вполне обычный межпланетный зонд MESSENGER, летевший к Меркурию. Для корректировки его курса инженеры предпочли использовать отражение солнечных лучей от блестящей поверхности солнечных батарей аппарата. Тяга в итоге получалась очень маленькой, но зато ей можно было очень точно управлять, для маневрирования не требовалось топлива и сберегался ресурс ракетных двигателей.

Отдельно стоит упомянуть и т.н. электрический парус: его толкает вперед взаимодействие электрического поля тонких проволочек с летящими от Солнца заряженными частицами. И первенство в этой области принадлежит не одной из признанных космических держав, а Эстонии: собранный в Университете Тарту ESTCube-1 вышел на орбиту в 2013 году и проработал два года. Правда об успехе эстонцев надо упоминать «со звездочкой»: раскрыть электрический парус им не удалось. Но сейчас эстонские инженеры работают над следующим аппаратом, ESTCube-2. Может, все-таки успеют стать по-настоящему первыми.

Электрические паруса менее эффективны в сравнении с солнечными, однако они требуют куда меньше материала (тонкие проволоки вместо сплошной пленки). Легкие и компактные, они подходят для долговременных миссий — например, есть проект «электрического парусника» к Урану. Он сможет достичь этого ледяного гиганта всего за шесть лет. Для сравнения: «Вояджер-2» потратил девять лет, и при этом расположение планет было на редкость удачным.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector