2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электронный регулятор оборотов двигателя ямз

Регулировка ТНВД в сборе с регулятором числа оборотов

Перед регулировкой в корпус насоса и в корпус регулятора заливают дизельное масло Дп-11 по ГОСТ 5304—54 до верхних меток указателей уровня и проверяют герметичность нагнетательных клапанов методом опрессовки их профильтрованным дизельным топливом через подводящий канал насоса под давлением 1,7—2,0 кгс/см2 при положении рейки, соответствующем выключенной подаче. Течь топлива из соединительных ниппелей в течение 2 мин не допускается. Отверстие в корпусе перепускного клапана во время регулировки закрывают резьбовой пробкой. Начало подачи топлива проверяется и регулируется без автоматической муфты опережения впрыска. Момент начала подачи топлива наиболее точно определяется по началу истечения топлива из отрезка трубки высокого давления (установленного на штуцер) при создании в головке насоса давления топлива не менее 22 кгс/см2. В случае отсутствия возможности использовать этот метод, рекомендуется начало подачи топлива определять по началу движения топлива в моментоскопе. Схема устройства моментоскопа показана на рис. 81. Начало подачи топлива секциями определяется углом поворота кулачкового вала насоса при вращении его по часовой стрелке, если смотреть со стороны привода. Первая секция правильно отрегулированного насоса начинает подавать топливо за 37—38° до оси симметрии профиля кулачка. Для определения оси симметрии профиля кулачка необходимо зафиксировать на лимбе момент начала подачи топлива при повороте кулачкового вала по часовой стрелке, повернуть вал по часовой стрелке на 90° и зафиксировать на лимбе момент начала подачи топлива при повороте вала против часовой стрелки. Середина между двумя зафиксированными точками определяет ось симметрии профиля кулачка. Лимб должен иметь плотное соединение с валом привода. При повороте лимба люфт между валом и лимбом не допускается. Если угол, при котором первая секция насоса начинает подачу топлива, условно принять за 0°, то остальные секции должны начинать подачу топлива при следующих значениях углов поворота кулачкового вала:

При установке дополнительных шайб увеличивается преднатяг пружины корректора, увеличивается и цикловая подача, при снятии шайб цикловая подача уменьшается. Величина пусковой подачи топлива при 70—90 об/мин кулачкового вала должна быть для насосов, укомплектованных новыми плунжерными парами и нагнетательными клапанами, 220— 240 мм3/цикл, для насосов, подвергнутых капитальному ремонту и укомплектованных плунжерными парами и нагнетательными клапанами, бывшими в эксплуатации, не менее 200 мм3/цикл. Предельно допустимая величина пусковой подачи топлива в эксплуатации не должна быть менее 180 мм3/цикл. Подрегулировку производят вывинчиванием винта 21 (см. рис. 73) кулисы. После этого винт кулисы необходимо законтрить чеканкой.

Винтом регулировки номинальной подачи устанавливают вдвиг рейки, соответствующий цикловой подаче секциями в пределах, указанных в табл. 23, при упоре рычага управления регулятором в болт ограничения максимального скоростного режима.

Затем проверяют неравномерность подачи топлива секциями насоса при частичной средней цикловой подаче 15—20 мм3/цикл при 240—260 об/мин кулачкового вала. Неравномерность подачи топлива секциями насоса не должна превышать: при укомплектовании новыми плунжерными парами и клапанами для насоса двигателя ЯМЗ-236 —40%, для насосов двигателей ЯМЗ-238 всех модификаций— 50%; при укомплектовании плунжерными парами и клапанами, бывшими в эксплуатации, для насоса двигателя ЯМЗ-236 — 60%; для насосов двигателей ЯМЗ-238 всех модификаций — 70%.

В случае большой неравномерности подачи необходимо привести ее к допустимым значениям путем перестановки или замены нагнетательных клапанов, а также подбора пружин нагнетательных клапанов.

Далее болтом 12 (см. рис. 82) ограничения максимального скоростного режима устанавливают начало и конец выдвига рейки. Начало выдвига рейки насосов двигателей ЯМЗ-236, ЯМЗ-238, ЯМЗ-238А и ЯМЗ-238К должно быть при 1070—1080 об/мин кулачкового вала, конец выдвига — 1120—1150 об/мин, для насосов двигателя ЯМЗ-238Г начало выдвига — при 870—880 об/мин, конец при 930—980 об/мин, для насоса двигателя ЯМЗ-238И начало выдвига при 780—790 об/мин. Число оборотов кулачкового вала насоса двигателя ЯМЗ-238И, соответствующее концу выдвига рейки (полному выключению регулятором подачи топлива секциями насоса через форсунки), должно быть на 30—55 об/мин больше числа оборотов начала выдвига рейки при упоре рычага управления регулятором в болт ограничения максимальных оборотов. В случае отклонения числа оборотов конца выдвига от заданных производят регулировку винтом 10 двуплечего рычага. При ввертывании винта число оборотов конца выдвигай рейки уменьшается, при вывертывании увеличивается.

После этого следует проверить при вывернутом болте 13 минимальных холостых оборотов обеспечение автоматического выключения подачи топлива при 225—275 об/мни кулачкового вала насоса.

Сдаточные испытания отрегулированного насоса проводятся с комплектом форсунок, предназначенных для обкатки насоса в течение 45 мин при 1020—1040 об/мин кулачкового вала. Рычаг управления регулятором должен упираться в болт ограничения максимального скоростного режима. За время испытаний производится замер количества просочившегося через зазоры в прецизионных деталях в полость кулачкового вала топлива. Максимально допустимое просачивание топлива в полость кулачкового вала в течение 20 мин не должно превышать для насосов двигателей ЯМЗ-236 4,5 см3 для новых прецизионных узлов и 7,0 см3 для прецизионных узлов, бывших в эксплуатации; для насосов двигателей ЯМЗ-238 всех модификаций — не более 6.0 см3 для новых прецизионных узлов н 9,0 см3 для прецизионных узлов, бывших в эксплуатации. В случае резкого увеличения просачивания необходимо проверить герметичность соединения между торцами втулок плунжера и корпусом насоса и устранить дефект. Во время сдаточных испытаний проверяют выключение подачи топлива через форсунки при среднем положении рычага управления регулятором. Впрыск топлива через форсунки не допускается. При повороте скобы 1 кулисы на 45° от исходного положения подача топлива всеми секциями должна полностью прекращаться. Не допускаются ненормальные шумы, заедание плунжеров и других деталей (при разных положениях рейки), отпотевание и течь в местах уплотнений. Перед снятием насоса со стенда отверстия отвода и подвода топлива закрывают транспортными пробками и колпачками, устанавливают на насос автоматическую муфту опережения впрыска.

Всережимный регулятор числа оборотов коленчатого вала двигателя ЯМЗ-236

1 — регулировочный винт подачи топлива и мощности двигателя в период эксплуатации; 2 — кулиса; 3 — палец рычага рейки; 4 — серьга; 5 — муфта; 6 и 16 — грузы; 7 — корпус; 8 — шестерня кулачкового вала насоса; 9 — скоба кулисы; 10 — вал рычага пружины регулятора; 11 — рычаг управления; 12 — болт ограничения максимальных оборотов; 13 — болт ограничения малых оборотов холостого хода; 14 — шестерня валика регулятора; 15 — валик регулятора; 17 — зубчатая рейка; 18 — тяга зубчатой рейки; 19 — пружина рычага рейки; 20 — рычаг пружины; 21 — пружина регулятора; 22 — распорная пружина; 23 — двуплечий рычаг; 24 — рычаг привода рейки; 25 — регулировочный винт; 26 — рычаг регулятора; 27 — буферная пружина; 28 — контргайка; 29 — корпус буферной пружины; 30 — предохранительный колпачок; 31 — винт регулирования вдвига рейки; 32 — гаситель вибраций регулятора; 33 — плунжер; 34 — втулка; 35 — зубчатый сектор; 36 — гильза; 37 — корпус нагнетательного клапана; 38 — нагнетательный клапан; 39 — пружина; 40—штуцер

Читать еще:  402 плохо заводится при горячем двигателе

Для увеличения подачи топлива рычаг 11 управления перемещают в сторону болта 12. При этом усилие от рычага 11 на рейку 17 передается через вал 10 на рычаг 20, затем пружину 21 регулятора, двуплечий рычаг 23, регулировочный винт 25, рычаг 26 регулятора, серьгу 4, а затем на шарнирно связанный с ней рычаг 24 привода рейки и тягу 18.

Рейка 17 вдвигается в корпус насоса, и подача топлива секциями увеличивается.

Для уменьшения подачи топлива необходимо выдвинуть рейку из корпуса насоса, что достигается перемещением рычага 11 управления в сторону болта 13.

Во время работы насоса перемещение рейки обеспечивается всережимным регулятором автоматически. Следует помнить, что пружины 19 и 21 регулятора, воздействуя на рычаг 24 привода рейки, стремятся установить зубчатую рейку 17 в положение большей подачи.

Снижение нагрузки сопровождается увеличением скорости вращения коленчатого вала. Одновременно увеличивается скорость вращения грузов 6 и, 16 регулятора, центробежная сила грузов возрастает, и они, повертываясь на своих осях, через ролики перемещают муфту 5 по валику 15 регулятора. Вместе с муфтой будет перемещаться шарнирно связанный с ней рычаг 24 привода рейки. Рейка немного выдвинется из корпуса насоса и через зубчатые секторы повернет плунжеры секций насоса в сторону уменьшения подачи топлива. Скорость вращения вала двигателя, а следовательно, и грузов 6 к 16 регулятора снизится, и грузы слабее будут давить на муфту 5.

В результате усилием пружин 19 и 21 рейка насоса установится в положение большей подачи топлива, и двигатель будет работать на заданном скоростном режиме.

Когда рычаг 11 управления устанавливают в положение большей подачи топлива, вместе с ним поворачивается рычаг 20, и натяжение пружины 21 регулятора увеличивается.

При установке рычага 11 управления до упора в болт 12 подача топлива, а следовательно, и мощность двигателя будут наибольшими. Если при этом положении рычага уменьшится нагрузка двигателя, то возрастает скорость вращения коленчатого вала двигателя и грузов 6 и 16 регулятора. Грузы, воздействуя через муфту 5 и систему рычагов на зубчатую рейку 17 насоса, выдвинут ее в сторону регулятора. Подача топлива уменьшится, что ограничит максимальные обороты коленчатого вала и предохранит двигатель от разноса при уменьшении нагрузки.

Муфта опережения впрыска топлива

Предназначена — для автома­тического изменения начала подачи топлива в цилиндры в зависи­мости от числа оборотов коленчатого вала двигателя.Автоматическая муфта опережения впрыска установлена на переднем конце кулачкового вала ТНВД.

В задней части центрального отверстия муфты имеется конус со шпоночным пазом для установки муфты на передний конец кулачкового вала ТНВД. В два противоположно расположенных отвер­стия ведомой полумуфты запрессованы оси грузов, изго­товленные из хромомарганцевой низкоуглеродистой стали. На переднем конце каждой оси срезана лыска, на которой выполнено цилиндрическое углубление для установки пружины муфты и стальных регулировочных прокладок. При запрессовке осей грузов ихлыски располагаются таким образом, чтобы пружины, установленные между осями грузов и пальцами ведущей полумуфты, имели минимальный изгиб при работе муфты.

Грузы установлены на осях с зазором 0,04-0,12 мм. Для каждой муфты подобрана пара грузов одной группы (с одинаковым статическим моментом относительно осей).

Ведущая полумуфта.

На ведущих пальцах полумуфты выполнены лыски с выточками для установки пружин. На переднем торце полумуфты обработаны два прямоугольных шипа, с помощью которых муфта приводится во вращательное движение. На посадочной поверхности втулки прото­чена смазочная канавка с двумя радиальными подводящими отвер­стиями.
В передней части втулки просверлены два наклонных отвер­стия, сообщающие внутреннюю полость муфты с пространством за резино-армированным сальником, запрессованным в расточку полумуфты.

Ведущая полумуфта в сборе с сальником установлена на ступице ведомой полумуфты.
Корпус муфты опережения впрыска, обработанный из чугун­ной отливки, установлен на резьбе на ведомой полумуфте с уплотнительным кольцом из масло-бензостойкой резины и фиксируется от отвертывания раскерниванием металла в специальный паз, выполненный на заднем торце корпуса.

На переднем торце корпуса просверлены два отверстия для заполнения муфты смазкой.Отвер­стия закрыты винтами с уплотнительными шайбами. В передней части корпуса выполнена расточка, в которую установлен резино-армированный сальник, уплотняющий полость муфты.
После сборки муфты и ее регулировки на передний торец корпуса наносится цифра 18 или 20, указывающая угол опережения впрыс­ка топлива, который должен быть установлен на двигателе с этой муфтой.

РЕГУЛЯТОР ОБОРОТОВ ДВИГАТЕЛЯ С РЕВЕРСОМ

Всем привет, наверно многие радиолюбители, также как и я, имеют не одно хобби, а несколько. Помимо конструирования электронных устройств занимаюсь фотографией, съемкой видео на DSLR камеру, и видео монтажом. Мне, как видеографу, был необходим слайдер для видео съемки, и для начала вкратце объясню, что это такое. Ниже на фото показан фабричный слайдер.

Слайдер предназначен для видеосъемки на фотоаппараты и видеокамеры. Он являются аналогом рельсовой системы, которая используется в широкоформатном кино. С его помощью создается плавное перемещение камеры вокруг снимаемого объекта. Другим очень сильным эффектом, который можно использовать при работе со слайдером, – это возможность приблизиться или удалиться от объекта съемки. На следующем фото изображен двигатель, который выбрал для изготовления слайдера.

В качестве привода слайдера используется двигатель постоянного тока с питанием 12 вольт. В интернете была найдена схема регулятора для двигателя, который перемещает каретку слайдера. На следующем фото индикатор включения на светодиоде, тумблер, управляющий реверсом и выключатель питания.

Читать еще:  Вибрация двигателя nissan причины

При работе такого устройства важно, чтоб была плавная регулировка скорости, плюс легкое включение реверса двигателя. Скорость вращения вала двигателя, в случае применения нашего регулятора, плавно регулируется вращением ручки переменного резистора на 5 кОм. Возможно, не только я один из пользователей этого сайта увлекаюсь фотографией, и кто-то ещё захочет повторить это устройство, желающие могут скачать в конце статьи архив со схемой и печатной платой регулятора. На следующем рисунке приведена принципиальная схема регулятора для двигателя:

Схема регулятора

Схема очень простая и может быть легко собрана даже начинающими радиолюбителями. Из плюсов сборки этого устройства могу назвать его низкую себестоимость и возможность подогнать под нужные потребности. На рисунке приведена печатная плата регулятора:

Но область применения данного регулятора не ограничивается одними слайдерами, его легко можно применить в качестве регулятора оборотов, например бор машинки, самодельного дремеля, с питанием от 12 вольт, либо компьютерного кулера, например, размерами 80 х 80 или 120 х 120 мм. Также мною была разработана схема реверса двигателя, или говоря другими словами, быстрой смены вращения вала в другую сторону. Для этого использовал шестиконтактный тумблер на 2 положения. На следующем рисунке изображена схема его подключения:

Средние контакты тумблера, обозначенные (+) и (-) подключают к контактам на плате обозначенным М1.1 и М1.2, полярность не имеет значения. Всем известно, что компьютерные кулеры, при снижении напряжения питания и, соответственно, оборотов, издают в работе намного меньший шум. На следующем фото, транзистор КТ805АМ на радиаторе:

В схеме можно использовать почти любой транзистор средней и большой мощности n-p-n структуры. Диод также можно заменить на подходящие по току аналоги, например 1N4001, 1N4007 и другие. Выводы двигателя зашунтированы диодом в обратном включении, это было сделано для защиты транзистора в моменты включения — отключения схемы, так как двигатель у нас нагрузка индуктивная. Также, в схеме предусмотрена индикация включения слайдера на светодиоде, включенном последовательно с резистором.

При использовании двигателя большей мощности, чем изображен на фото, транзистор для улучшения охлаждения нужно прикрепить к радиатору. Фото получившейся платы приведено ниже:

Плата регулятора была изготовлена методом ЛУТ. Увидеть, что получилось в итоге, можно на видеоролике.

Видео работы

В скором времени, как будут приобретены недостающие части, в основном механика, приступлю к сборке устройства в корпусе. Статью прислал Алексей Cитков.

Чипгуру

  • Форум
    • Правила форума
    • Правила для Редакторов
    • Правила конкурсов
    • Руководство барахольщика
    • Ликбез по форуму
      • Изменить цвет форума
      • Как вставлять фотографии
      • Как вставлять ссылки
      • Как вставлять видео
      • Как обозначить оффтоп
      • Как цитировать
      • Склеивание сообщений
      • Значки тем
      • Подписка на темы
      • Автоподписка на темы
    • БиБиКоды (BBCode)
    • Полигон для тренировок
  • Калькуляторы
    • Металла
    • Обороты, диаметр, скорость
    • Подбора гидроцилиндров
    • Развертки витка шнека
    • Расчёт треугольника
    • Теплотехнический
    • Усилия гибки
  • Каталоги
    • Подшипников
    • Универсально-сборные пр.
    • УСП-12
  • Справочники
    • Марки стали и сплавы
    • Открытая база ГОСТов
    • Применимость сталей
    • Справочник конструктора
    • Справочник ЧГ сталей
    • Сравнение материалов
    • Стандарты резьбы
  • Таблицы
    • Диаметров под резьбу
    • Конусов Морзе
    • Номеров модульных фрез
  • Ссылки
  • Темы без ответов
  • Активные темы
  • Поиск
  • Наша команда

Управление коллекторным двигателем с помощью U2010B

  • Версия для печати
  • Перейти на страницу:

Управление коллекторным двигателем с помощью U2010B

Сообщение #1 omich » 27 окт 2017, 14:43

Решил перенести тему сюда, поскольку, здесь ей более подходящее место, вместо другого ресурса с мопедной тематикой, да еще и в формате блога, а не форума. Тут хоть обсуждать можно будет и оказывать помощь, если что-то у кого-то не получается.

Тема, практически, скопирована с предыдущего ресурса с небольшими изменениями.

Началось все с того, что приобрел маленькое точило ТЭ+ВГ-150 с коллекторным двигателем и плавной регулировкой оборотов. Но, как оказалось, родная схема регулировки оборотов точила была построена на одном симисторе, паре резисторов с конденсаторами и вообще не держала обороты, поэтому решил ее переделать.
Исходную схему управления оборотами точила ТЭ+ВГ-150 срисовал, может кому пригодится:

Сначала провел исследования, что в мире уже придумано на этот счет. Тема управления оборотами коллекторных двигателей, очень популярна и вариантов попадалось множество, причем, довольно много на уже устаревшей элементной базе.
Из более современных решений, приглянулись специализированные микросхемы «Phase Control» разработки фирмы Atmel (которые на данный момент можно найти в Китае ) . Там был простой вариант на U2008B, но в ней не предусмотрено обратной связи, чтобы поддерживать заданные обороты. Есть и U211B(или U209B — урезанный вариант U211B), но для нее нужен тахогенератор, который у точила не предусмотрен, поэтому наиболее подходящая для моих целей оказалась U2010B, у которой есть и обратная связь по току и защита от перегрузки и плавный старт.

Схему на U2010b взял из даташита без какой-либо переделки:

Делали обозначены согласно оригинальной схеме:
R1 — 2 шт. по 36 кОм 2 Вт (в оригинале один резистор на 18 кОм 2 Вт, но он ощутимо греется, поэтому лучше сделать из двух)
R2 — 1 шт. 330 кОм 0,125 Вт
R3 — 1 шт. 180 Ом 0,5 Вт
R4 — 1 шт. 3,3 кОм 0,125 Вт
R5 — 1 шт. 3,3 кОм 0,125 Вт
R6 — надо подбирать по формуле
R7 — 1 шт. 7,5 кОм 0,125 Вт
R8 — 1 шт. подстроечный 470 кОм
R10 — 1 шт. подстроечный 100 кОм
R11 — 1 шт. подстроечный 1 мОм
P1 — 1 шт. переменный резистор 50 кОм (с ручкой регулировки и выключателем)
Симистор BTA16-600
Конденсаторы:
Электролитические
С1 — 1 шт. 22 мкф х 50 вольт
С2 — 1 шт. 4,7 мкф х 50 вольт
С7 — 1 шт. 1 мкф х 50 вольт
Керамические с выводами
С3 — 1 шт 0,015 мкф
С4 — 1 шт 0,15 мкф
С5 — 1 шт 0,1 мкф
D1 — 1N4007 или HER107 или любой буржуйский(китайский) на напряжение не менее 400 вольт, но лучше с запасом побольше.
Светодиод D3 любой малогабаритный(5 мм) красного цвета. Обозначает перегрузку.
И не забыть про микросхему U2010b

Читать еще:  Датчик давления масла двигателя f3r

ЗЫ. R14 я вообще не ставил, а заменил перемычкой

Обозначение элементов соответствует даташиту. Переменный резистор(обозначен P1) с выключателем(это чуточку доработал схему) и контакты выключателя разрывают сетевое напряжение(на схеме этого нет).

Вытравил и просверлил печатную плату:

На всех схемах только обозначено напряжение на R6 и нигде не указано каким оно должно быть. Проведя некоторые исследования, натолкнулся на ответ техподдержки фирмы:

Question
Is the 250 mV value also valid for 120V systems, or is it only valid for 240V?
Also, is the signal peak-to-peak or RMS?

Answer
Independent of supply voltage, the 250 mV value is the suggested voltage drop on the current sense resistor R6. This value should be considered being inside the linear signal transmission of current detection. The 250 mV value defines the effective RMS value, hence the corresponding peak value measures about 350 mV. Refer to the typical diagram of load current detection in the datasheet, Fig.5-7.

—————
Из их ответа ясно, что падение на резисторе 250 милливольт является не пиковым, а действующим и не зависит от напряжения питания сети. Исходя из этого R6 можно легко рассчитать.

Рассчитать R6 можно исходя из мощности двигателя по формуле:
R6 = U R6 /(P двиг /U пит ), где U R6 — напряжение на R6 (250 мВ), P двиг — мощность двигателя, U пит — напряжение питания сети.
Для точила с двигателем мощностью 150 ватт
рассчитываем: R6= 0,25/(150/220) = 0,37 Ом

Настройка схемы:
Переменный резистор P1 установить на минимальные обороты двигателя, т.е. по схеме движок потенциометра должен быть повернут к резистору R14 на схеме, но, т.к. я его на плате не разводил, то к минусу C7 и подстроечным резистором R8 выставить самые минимальные обороты двигателя. Я сделал, чтобы двигатель не крутился, но на нем уже было около 20-ти вольт. Если сделать, чтобы совсем был ноль, то тогда становится слишком нелинейная зависимость управления резистором P1, т.е. при его повороте сначала двигатель не крутится, а потом резко «срывается с места».
Внимание! Еще пришлось добавить чуточку емкости C3, а иначе за период выдавалось несколько импульсов управления и схема работала неправильно,т.е. обороты двигателя практически не регулировались и двигатель работал на полную. Выяснить причину удалось с помощью осциллографа. Емкость 10n, похоже, рассчитана на 60-герцовую сеть. Я ему добавил параллельно емкость 102K(0,001 мкф), т.е. в итоге C3 получился 0,011 мкф (думаю, можно даже поставить 0,015 мкф) и схема сразу заработала правильно.
Еще одна тонкость — это нужно правильно подбирать резистор R6 под мощность двигателя. Выше представленная формула правильная, но на практике может потребоваться некоторая коррекция по поведению двигателя под нагрузкой. Если резистор великоват, то двигатель довольно резко стартует(т.е. делает слишком большую компенсацию нагрузки, чем надо), а потом отключается, а если резистор будет мал, то не будет обеспечиваться компенсация нагрузки. У меня при расчетном значении 0,37 Ом на практике лучше получилось с 0,33 Ом. Резистором R10 как раз настраивается компенсация нагрузки. Я настраивал так: Включил на средних оборотах и притормаживая вал двигателя через тряпку, выставил этим резистором, чтобы обороты не менялись при изменении нагрузки. Одновременно с этим поглядывал на вольтметр подключенный к двигателю. При увеличении нагрузки на двигатель схема прибавляет напряжение и двигатель крутится с одинаковой скоростью. На максимальных оборотах настраивать бесполезно, т.к. там уже подается полное напряжение сети и обороты компенсировать нечем.
А вот как настраивается и на что действует резистор R11, я так и не понял. Крутил его от одного края до другого и при этом тормозил двигатель, чтобы попытаться «поймать» уровень перегрузки, но может из-за того, что двигатель слишком маломощный и на нем даже в заклиненном состоянии ток не очень большой, перегрузка так и не срабатывала.

В общем схема работает именно так, как и ожидалось, а точило теперь неплохо держит обороты не только при изменении нагрузки, но и при изменении питающего напряжения. Я ЛАТРом на средних оборотах менял сетевое напряжение от 200 до 240 вольт и обороты держались одинаковыми. Т.е. теперь схемы зажигания отлаживать будет гораздо удобнее. А еще теперь максимальные обороты возросли, т.к. новая схема «на максимуме» полностью открывает симистор, а старая вольт 15 оставляла, т.е. симистор открывался с задержкой и часть периода не использовалась.

Новая отлаженная схема почти установленная вместо старой (старая на фото в левом нижнем углу) .

ЗЫ. Резистор R3 увеличил на 51 Ом. Импульсы управления с микросхемы идут амплитудой 8 вольт, поэтому R3 можно сделать побольше 180 Ом обозначенных на схеме.

ЗЫ.ЗЫ. Как же мне теперь нравится как двигатель с этой новой схемой здорово держит обороты. Можно теперь легко задать обороты 1. 2 оборота в секунду и магнит стенда крутится абсолютно ровно и без рывков. Раньше такие обороты было просто невозможно установить. Сила магнита не маленькая и раньше двигатель или быстро мог крутить магнит или останавливался. Двигатель точила работает так, как будто у него обратная связь с тахометром, хотя на самом деле нет.

Кому интересно и захочет повторить конструкцию, то выкладываю печатную плату в формате Sprint-Layout 6.0.
По просьбам трудящихся развел плату и для корпуса Dip16.
В архиве теперь раводка и для SMD и для Dip корпусов U2010b, а также компактная на СМД деталях для гравера.

А это вторая плата, которая управляет кухонным вентилятором:

(Для фото сессии, коробочку с платой, приклеенной на двухсторонний скотч, оторвал от стены)

Добавил еще плату для гравера, для замены его родной простейшей схемы, была как и заводская у точила.
Плата 23х52 мм:

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector