0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрическая схема привода асинхронных двигателей

Замена приводов постоянного тока на асинхронные двигатели с частотным регулированием.
учебно-методический материал

Учебный материал на тему замены приводов постоянного тока на асинхронные двигатели с частотным регулированием.

Скачать:

ВложениеРазмер
Замена приводов постоянного тока на асинхронные двигатели с частотным регулированием.24.33 КБ

Предварительный просмотр:

Замена приводов постоянного тока на асинхронные двигателя с частотным регулированием.

Замена двигателей постоянного тока на асинхронные регулируемые двигатели Двигатели постоянного тока (ДПТ) широко применяются и в наше время, благодаря использованию современных тиристорных преобразователей, которые позволяют осуществлять регулирование скорости этих двигателей путем изменения напряжения на якоре или в обмотках возбуждения. Для расширения диапазона регулирования скорости используются различные сигналы обратной связи (напряжение на якоре, тахогенераторы и т.д.). Однако эксплуатация двигателей постоянного тока влечет за собой ряд значительных неудобств, связанных с конструктивными особенностями машин данного типа, а именно:

1. Сложность конструкции и, как результат, высокая цена.

2. Наличие щеточно-коллекторного узла.

3. Большая масса.

4. Необходимость в периодическом обслуживании.

5. Ограниченный ресурс.

Все эти недостатки требуют существенных затрат при покупке машин постоянного тока и их дальнейшей эксплуатации, а также они могут значительно снизить надежность и точность систем в целом. Необходимо планировать дополнительные планово-предупредительные работы и останавливать производство для обслуживания щеточно-коллекторных узлов, проводить периодическую продувку машин от пыли.

До недавнего времени внедрение асинхронных двигателей (АД) с короткозамкнутыми роторами в системы, где требуется широкий диапазон регулирования скорости, не представлялось возможным, а для изменения скорости движения приводных механизмов использовались переключаемые редукторы или вариаторы.

Дальнейшим развитием таких систем стало появление асинхронных двигателей с переключением числа полюсов (двух и трех скоростные двигатели), что позволяло ступенчато изменять скорость вращения. С развитием полупроводниковой электроники (разработка IGBT транзисторов), появилась возможность производства недорогих микропроцессорных преобразователей частоты (инверторов), с по- мощью которых стало возможным полноценно управлять скоростью асинхронных двигателей в ши- роком диапазоне регулирования (1:1000). Теперь частота вращения АД не зависит от частоты питающей сети, двигатели можно разгонять ниже и выше их номинальной скорости. Также появилась возможность управления моментом асинхронных двигателей. Системы управления движением с использованием асинхронных двигателей и преобразователей частоты получаются дешевле и проще подобных систем с двигателями постоянного тока. В качестве датчиков обратной связи широко используются цифровые устройства (энкодеры), которые менее подвержены влиянию электромагнитных помех, чем тахогенераторы, используемые с машинами постоянного тока. Асинхронный двигатель – простая, недорогая, не требующая обслуживания машина. Именно эти аргу- менты привели к тому, что на многих предприятиях машины постоянного тока с тиристорными преобразователями стали заменяться на асинхронные двигатели с системами управления, построенными на преобразователях частоты (частотных инверторах).

При подборе асинхронного двигателя взамен машины постоянного тока необходимо учитывать разность характеристик этих машин. Подбор двигателя осуществляется по следующим параметрам:

1. По номинальной скорости вращения. Диапазон изменения частоты вращения вала асинхронного двигателя должен быть равен или больше чем у двигателя постоянного тока.

2. По моменту (номинальному, пусковому, максимальному). Номинальный момент асинхронного двигателя должен быть равен или быть больше исходного при условии длительной работы в заданном диапазоне частот вращения без перегрева. Максимальный и пусковой моменты должны быть равны или быть больше пускового момента, определенного для данного механизма. 1 На рисунке 1 и 2 представлены механические характеристики регулируемого асинхронного двигателя и двигателя постоянного тока соответственно. При замене двигателя постоянного тока необходимо однозначно определить диапазон скорости вращения вала и требуемый момент в этом диапазоне. Как правило, для удовлетворения механических характеристик приводного механизма, приходится ставить асинхронный двигатель соответствующей мощности. Рис.1 Механические характеристики регулируемого асинхронного двигателя М ном М пуск М ном М пуск Рис.2 Механические характеристики регулируемого двигателя постоянного тока

3. По режиму работы. Нагрев электрической машины зависит от режима ее работы, то есть от соотношения длительности периодов работы под нагрузкой и пауз между ними, или периодов работы с полной или частичной нагрузкой, от частоты включения машины и характера протекания переходных процессов. Подразделяют следующие режимы работы: Продолжительный режим (S1) — режим при котором время работы машины при практически неизменных нагрузке и температуре окружающей среды достаточно для нагрева всех её частей до практически устано- вившейся температуры. Режим характеризуется неизменными потерями в течение всего времени работы машины. 2 Кратковременный режим (S2) — режим при котором периоды неизменной нагрузки чередуются с периодами отключения машины, причем за время работы температура частей машины не успевает достигнуть установившегося значения, а за время пауз машина охлаждается до холодного состояния. Повторно-кратковременные режимы (S3-S8) — отличаются от кратковременного продолжительностью включения под неизменную нагрузку и продолжительностью периодов отключения, причем время работы машины всегда меньше времени, необходимого для нагрева ее частей до установившейся температуры, а время пауз меньше необходимого для остывания машины до практически холодного состояния. Отличие между режимами S3-S8 заключается частотой пусков и продолжительностью включения машины.

4. По условиям эксплуатации. Согласно ГОСТ 17498-87 асинхронный двигатель должен иметь соответствующую степень защиты IPXX, где первый символ X означает степень защиты оболочкой, от проникновения инородных твердых тел, второй символ X означает степень защиты оболочкой от вредных воздействий проникающей воды. Например, IP54 — “Машина не полностью защищена от проникновения внутрь оболочки пыли (однако, пыль не может проникать в количестве, достаточном для нарушения работы изделия) и воды, разбрызгиваемой на оболочку в любом направлении”. В настоящее время все чаще в качестве главного привода в новых разработках машин применяется асинхронный двигатель с частотным преобразователем векторного типа или с обратной связью по скорости или по положению ротора. Последние достижения в области силовой электроники и микро- процессорной технике позволили значительно уменьшить стоимость комплектующих изделий частотного преобразователя при возросшей надежности этих изделий. В качестве частотного преобразователя часто используются изделия иностранных фирм. Анализ аналогичных изделий российского производства показывает, что все приводы изготавливаются с применением им- портных комплектующих, таких, как силовые IGBT модули и специализированные процессоры управления, не изготавливаемых российской промышленностью. Поэтому стоимость таких приводов при мелкосерийном производстве единичным предприятием не может быть ниже импортных, которые выпускаются тысячными партиями в год на нескольких специализированных производствах. Иностранные фирмы имеют несколько десятков заводов и представителей в разных странах мира, что позволяет постоянно отслеживать качество выпускаемых изделий. Имея собственных разработчиков, эти фирмы имеют возможность постоянно обновлять и улучшать выпускаемые изделия с появлением новых разработок в электронике.

Сравнивая стоимость комплектного привода (преобразователь + двигатель) можно однозначно заключить, что в настоящее время до мощности 5…7 кВт стоимость частотного привода значительно меньше по сравнению с аналоговым приводом постоянного тока. В случае применения современного цифрового привода постоянного тока стоимость частотных приводов с регулируемыми АД меньше стоимости привода с ДПТ во всем диапазоне мощностей.

Недостатком аналогового привода постоянного тока является низкая помехоустойчивость, сложность в на- стройке и нестабильность параметров. В качестве датчика обратной связи по скорости применяется тахогенератор, имеющий те же недостатки, что и коллекторный двигатель. Современные микроконтроллеры применяемые в частотных преобразователях, позволяют обрабатывать данные за период в несколько десятков микросекунд, (десять лет назад это время составляло 200 мс), что позволило расширить диапазон регулирования с обратной связью до 1:5000 с точностью поддержания скорости 0,2 оборота во всем диапазоне, что приближает данные привода к ста- ночным сервоприводам. Меньшая масса ротора асинхронного двигателя по сравнению с якорем двигателя постоянного тока позволяет повысить динамику привода в следящих и быстродействующих системах и повысить пре- дельные скорости вращения двигателей для приводов с новыми быстроходными инструментами (фрезы, пилы, диски, сверла).

3 Для примера приведен вариант замены двигателя постоянного тока на бумагорезательном станке. Фактор Привод постоянного тока Частотный привод Цена оборудования 2,5 кВт 1000 об/мин 2ПБ160М – 60 000 р. + блок управления Преобразователь частоты 5 кВт. + двигатель 3,0 кВт 1000 об/мин 4АМ112МА6 – 30 000 р. Периодичность планового ремонта 2 раза в год 1 раз в год Средняя стоимость годового обслуживания 10 000 р. 2 000 р. Средняя стоимость капитального ремонта двигателя 48 000 р. 4 000 р. Гарантийный срок 1 год (после ремонта) 3 года (после установки) КПД системы (включая преобразователь и выпрямитель) 75% 80% Стоимость модернизации (без учета материалов) — 25 000 р. (Практический пример и числовые данные взяты из Интернета.) Как видно из таблицы, установка частотного преобразователя окупается для заказчика за 2 года.

Стоимость асинхронного электродвигателя в несколько раз меньше стоимости двигателя постоянного тока. Асинхронные электродвигатели просты в обслуживании, надежны в эксплуатации и весьма долговечны (до 10 лет и более). С использованием преобразователя плавный программируемый пуск начинается с пониженной частоты, возрастающей по мере разгона, это очень похоже на реостатный пуск двигателя постоянного тока, ток ограничивается частотным инвертором, его максимальное пусковое значение снижается . При этом снимаются все ограничения по количеству пусков в час или за сутки работы двигателя. Для асинхронных двигателей общепромышленного применения разработаны и серийно изготавливаются стандартные редукторы различного типа (цилиндрические, червячные, планетарные). Все они могут быть успешно применены и для регулируемых асинхронных двигателей. Замена двигателей постоянного тока на регулируемые асинхронные двигатели может производиться при модернизации устаревшего оборудования и при проектировании нового технологического оборудования.

Области применения регулируемого асинхронного привода весьма широки. Этот привод можно успешно применять, например, в деревообрабатывающем оборудовании, в металлорежущем, в промышленных пылесосах, компрессорах, насосах для перекачки жидкостей, в поломоечных машинах, в электроштабелерах, электропогрузчиках и электротележках в качестве тяговых или исполнительных двигателей (работа с автономными аккумуляторами). Диапазон номинальных рабочих напряжений асинхронных регулируемых двигателей — 40…400 В. Охлаждение – воздушное (собственное или внешнее). Двигатели имеют защиту от перегрева обмоток. Для всего этого рабочего диапазона номинальных напряжений выпускаются серийные частотные преобразователи, например, фирмой «Семикрон» (Германия).

Электрическая схема привода асинхронных двигателей

Простой преобразователь частоты для асинхронного электродвигателя.

Автор: Сергей М.
Опубликовано 11.12.2012
Создано при помощи КотоРед.

Первым был ресторан – зимой холодный воздух должен строго дозировано дуть на разгорячённых посетителей, а летом наоборот –замерзших от холодного мороженого плавно согревать жарким воздухом с улицы. Без инвертора никак не обойтись.
Второй хочет стричь лохматых овец , но вот беда машинка трехфазная. А в поле только одна да и та не 220в. Опять нужен инвертор.
Третий вообще наждачный камень , сверлильный станок и намоточный –захотел прицепить к двигателю.
В конце концов оглядевшись по сторонам я увидел – все…все делают инверторы японцы, французы, немцы …. , только я ещё не имею своего точила для отверток. И мало того все приличные фирмы уже написали , как это делать.

Итак коль уж асинхронный двигатель так распространён и трехфазная система напряжения созданная М. О. Доливо-Добровольским так удобна. А современная элементная база так хороша. То сделать преобразователь частоты –это лишь вопрос личного желания и некоторых финансовых возможностей. Возможно кто то скажет « Ну, зачем мне инвертор , я поставлю фазосдвигающий конденсатор и все решено» . Но при этом обороты не покрутишь и в мощности потеряешь и потом это не интересно.

Возьмём за основу – в быту есть однофазная сеть 220в, народный размер двигателя до 1 кВт. Значить соединяем обмотки двигателя треугольником. Дальше –проще, понадобится драйвер трехфазного моста IR2135(IR2133) выбираем такой потому, что он применяется в промышленной технике имеет вывод SD и удобное расположение выводов. Подойдёт и IR2132 , но у неё dead time больше и выхода SD нет. В качестве генератора PWM выберем микроконтроллер AT90SPWM3B — доступен, всем понятен, имеет массу возможностей и недорого стоит, есть простой программатор -https://real.kiev.ua/avreal/. Силовые транзисторы 6 штук IRG4BC30W выберем с некоторым запасом по току — пусковые токи АД могут превышать номинальные в 5-6 раз. И пока не ставим «тормозной» ключ и резистор, будем тормозить и намагничивать перед пуском ротор постоянным током, но об этом позже . Весь процесс работы отображается на 2-х строчном ЖКИ индикаторе. Для управления достаточно 6 кнопок (частота +, частота -, пуск, стоп, реверс, меню).
Получилась вот такая схема.

Я вовсе не претендую на законченность конструкции и предлагаю брать данную конструкцию за некую основу для энтузиастов домашнего электропривода. Приведённые здесь платы были сделаны под имеющиеся в моём распоряжении детали.

Конструктивно инвертор выполнен на двух платах – силовая часть ( блок питания , драйвер и транзисторы моста , силовые клеммы) и цифровая часть (микроконтроллер + индикатор ). Электрически платы соединены гибким шлейфом. Такая конструкция выбрана для перехода в будущем на контроллер TMS320 или STM32 или STM8.
Блок питания собран по классической схеме и в комментариях не нуждается. Микросхема IL300 линейная опто развязка для управления током 4-20Ма. Оптроны ОС2-4 просто дублируют кнопки «старт, стоп, реверс» для гальванически развязанного управления. Выход оптрона ОС-1 «функция пользователя» (сигнализация и пр.)
Силовые транзисторы и диодный мост закреплены на общий радиатор. Шунт 4 витка манганинового провода диаметром 0.5мм на оправке 3 мм.
Сразу замечу некоторые узлы и элементы вовсе не обязательны. Для того что бы просто крутить двигатель , не нужно внешнее управление током 4-20 Ма. Нет необходимости в трансформаторе тока, для оценочного измерения подойдёт и токовый шунт. Не нужна внешняя сигнализация. При мощности двигателя 400 Вт и площади радиатора 100см 2 нет нужды в термодатчике.

ВАЖНО! – имеющиеся на плате кнопки управления изолированы от сети питания только пластмассовыми толкателями. Для безопасного управления необходимо использовать опторазвязку.

Возможные изменения в схеме в зависимости от микропрограммы.
Усилитель DA-1 можно подключать к трансформатору тока или к шунту. Усилитель DA-1-2 может быть использован для измерения напряжения сети или для измерения сопротивления терморезистора если не используется термодатчик PD-1.
В случае длинных соединительных проводов необходимо на каждый провод хотя бы надеть помехоподавляющие кольцо. Имеют место помехи. Так например –пока я этого не сделал у меня «мышь» зависала.
Так же считаю важным отметить проверку надёжности изоляции АД –т.к. при коммутации силовых транзисторов выбросы напряжение на обмотках могут достигать значений 1,3 Uпит.

Общий вид.

Немного про управление.

Начитавшись книжек с длинными формулами в основном описывающих как делать синусоиду при помощи PWM. И как стабилизировать скорость вращения вала двигателя посредством таходатчика и ПИД регулятора. Я пришёл к выводу –АД имеет достаточно жёсткую характеристику во всём диапазоне допустимых нагрузок на валу.
Поэтому для личных нужд вполне подойдет управление описанное законом Костенко М.П. или как его ещё называют скаляроное. Достаточное для большинства практических случаев применения частотно регулируемого электропривода с диапазоном регулирования частоты вращения двигателя до 1:40. Т.е. грубо говоря мы в самом простом случае делаем обычную 3-х фазную розетку с переменной частотой и напряжением меняющимися в прямой зависимости. С небольшими «но» на начальных участках характеристики необходимо выполнять IR компенсацию т.е. на малых частотах нужно фиксированное напряжение . Втрое «но» в питающие двигатель напряжение замешать 3 гармонику. Всё остальное сделают за нас физические принципы АД. Более подробно про это можно прочесть в документе AVR494.PDF
Основываясь на моих личных наблюдениях и скромном опыте именно эти методы без особых изысков чаще всего применяются в приводах мощностью до 15 кВт.
Далее не буду углубляться в теорию и описание мат моделей АД. Это и без меня достаточно хорошо изложили профессора ещё в 60-х.

Но ни в коем случае не стоит недооценивать сложности управления АД. Все мои упрощения оправданны только некоммерческим применением инвертора.

Плата силовых элементов.

В программе V-1.0 для AT90SPWM3B реализовано
1- Частотное управление АД .Форма напряжения синусоида с 3 гармоникой.
2- Частота задания 5 Гц -50 Гц с шагом 1 Гц. Частота ШИМ 4 кГц.
3- Фиксированное время разгона –торможения
4- Реверс (только через кнопку СТОП)
5- Разгон до заданной частоты с шагом 1 Гц
6 – Индикация показаний канала АЦП 6 (разрядность 8 бит., оконный фильтр апертура 4 бита)
я использую этот канал для замера тока шунта.
7 – Индикация режима работы START,STOP,RUN,RAMP, и Частота в Гц.
8- Обработка сигнала авария от мс IR2135

Торможение двигателя принудительное – без выбега. При этом нужно помнить – если на валу будет висеть огромный вентилятор или маховик то напряжение на звене постоянного тока может достичь опасных значений. Но я думаю вертолёты с приводом от АД строить никто не будет

Функции микропрограммы в будущих версиях

1 -намагничивание ротора перед пуском
2- торможение постоянным током
3 –прямой реверс
4 – частота задания 1 -400 Гц.
5 – ограничение, контроль тока двигателя.
6 — переключаемые зависимости U/F
7 – контроль звена постоянного тока.
8 – некоторые макросы управления –это вообще в далёких планах.

Испытания.
Данная конструкции была проверена с двигателем 0.18кВт и 0.4 кВт и 0.8 кВт. Все двигатели остались довольны.
Только при малых оборотах и долговременной работе необходимо принудительное охлаждение АД.

Строка для программатора
av_28r4.exe -aft2232 -az +90pwm3b -e -w -v -fckdiv=1,psc2rb=0,psc1rb=0,psc0rb=0,pscrv=0,bodlevel=5 -c01.hex

Схемы пуска асинхронного электродвигателя

Асинхронные электродвигатели с короткозамкнутым ротором применяются в строительстве, металлообработке, химической, пищевой и других промышленных отраслях. Особенно широко используются трехфазные двигатели. Для их работы не требуются дополнительные пусковые обмотки. Однако отсутствие дополнительной обмотки приводит к тому, что в момент пуска на статоре возникает высокий пусковой ток, который может стать причиной просадки напряжения и, как следствие, перегрузки линии электропитания, короткого замыкания и других нештатных ситуаций.

Существует несколько схем запуска асинхронных двигателей — их выбирают в соответствии с особенностями и спецификой промышленного применения. Вкратце расскажем об этих схемах, за подробностями сюда https://tehprivod.su/.

Прямой пуск

Прямой пуск возможен для электродвигателей малой мощности. Значение пускового тока, превышающее номинальное в 7 раз, не является для них проблемой.

«Ахиллесова пята» прямого пуска — одновременное подключение нескольких двигателей к электрической подстанции малой мощности. При добавлении к сети еще одного двигателя просадка напряжения может быть критической и повлечь за собой остановку работающего оборудования.

Во избежание описанной ситуации время перегрузки сети должно быть максимально снижено. Как этого достичь? По возможности запускать электродвигатель с минимальной нагрузкой. Если оборудование предполагает длительные просадки при прямом пуске, они должны учитываться еще на стадии проектирования промышленных электросетей.

Плавный пуск

Снизить значение пускового тока можно, понизив напряжение на статоре при запуске электродвигателя. В процессе разгона его значение можно постепенно увеличивать.

Реостатный способ плавного пуска электродвигателя привлекает простотой и дешевизной, но сегодня он устарел и серьезно проигрывает устройствам плавного пуска.

Недостатки реостатной схемы очевидны:

Ее проблематично автоматизировать, усовершенствовав контроль и упростив управление.

Пуск электродвигателя под нагрузкой усложняется — крутящий момент снижается в 4 раза. Как следствие, двигателю требуется больше времени, чтобы набрать рабочую скорость.

Устройства плавного пуска, также известные как софтстартеры, лишены перечисленных недостатков. Они компактны и функциональны. Простейшие УПП обеспечивают:

Плавный пуск, разгон и остановку двигателя.

Возможность настройки и регулирования рабочих параметров.

Многоуровневую защиту электродвигателя.

Постоянное ограничение тока.

Пуск по схеме «звезда-треугольник»

Этот вариант привлекает простотой и дешевизной. Он предполагает соединение обмоток «звездой» при запуске, а в процессе разгона электродвигателя – перекоммутацию обмоток в нормальное положение «треугольник».

Напряжение на обмотке уменьшается почти в 2 раза, но в случае отказа одного из контакторов, управляемых вручную, пострадает вся коммутация. Как следствие, существенно упадет мощность двигателя, возникнут проблемы с его запуском.

Важно учитывать и уменьшающийся крутящий момент при соединении обмоток по схеме «звезда», вследствие которого запуск электропривода под нагрузкой может быть затруднен.

Пуск с преобразователем частоты

Пуск асинхронных электродвигателей с помощью частотных преобразователей привлекает гибкостью управления. Электронное управление современных ПЧ обеспечивает мягкий пуск и дальнейшую плавную регулировку работы электропривода. При этом соотношение напряжения и частоты придерживается строго заданных параметров.

Преимущество частотных преобразователей в том, что потребление электроэнергии сокращается почти на 50%. Как следствие, сокращаются текущие эксплуатационные расходы предприятия, снижается себестоимость производства.

Схема управления асинхронными трехфазными двигателями

Любой домашний мастер, необязательно хороший электрик, в своем арсенале имеет много универсальных станков и инструментов, использует электрические приборы, работающие от асинхронных двигателей, которыми можно пользоваться на расстоянии в автоматическом режиме.

Местное управление трехфазным двигателем
Рассмотрим на примере 3-х фазной системы алгоритм управления электродвигателем, по которому работает электрическая схема.

От электрического распред щитка мастерской, оборудованного вводными автоматами и рубильниками, посредством силового трехжильного кабеля подводится напряжение на силовые контакты ПМ 13 магнитного пускателя через подключенные токовые обмотки реле ТП.
Все провода фаз необходимо подбирать с учетом передаваемой мощности, которая вызывает нагрев металла. Для наглядности восприятия схемы фазы выделены разными цветами.
Разрывную способность контактов у пускателя следует сочетать с учетом электрической мощности двигателя под максимальной нагрузкой. Эти данные указываются в паспортах на электрическое оборудование и информационных табличках, прикрепленных к корпусу.

Состав приборов и их назначение
Обычная схема управления использует электрические приборы:
• магнитный пускатель;
• токовое тепловое реле класса РТЛ;
• две раздельные либо сдвоенные кнопки с обязательной пружинной конструкцией самовозврата.
Для защиты электродвигателя от перегрузок по току и/или исключения перегрева провода обмоток в силовую цепь через контактные зажимы КРЛ-клеммника подключаются токовые обмотки теплового реле ТП. Диэлектрический прочный корпус устройства прикрепляется непосредственно к магнитному пускателю либо — на Din-рейку. Предусмотрен также старый метод установки “под винт”.
Выпускаемые современные полупроводниковые тепловые реле снабжаются дополнительно такими функциями защиты, как:
• нарушения симметрий токов между фазами, которые создают неравномерную нагрузку на обмотки;
• пропадания напряжения в любой из фаз.
Электрическая схема рассматриваемых твердотельных реле способна выдержать напряжение 600 вольт. У нее реализована возможность регулирования токов несрабатывания защиты для учета мощности применяемого двигателя на номинальные токи в 10, 16 и более ампер.

Алгоритм управления
На схему управления подводится напряжение от одной из фаз и нуля. Нормально замкнутый контакт ТП-1 у теплового реле РТЛ в обычном режиме разрешает работу магнитному пускателю и, соответственно, электродвигателю. Размыкание контакта ТП-1 приводит к обесточиванию обмотки ПМ и отключению контактов ПМ-13, останову электродвигателя.
Запуск схемы происходит замыканием контакта Кн1 от нажатия кнопки “Пуск”, которая подает напряжение на обмотку ПМ. Срабатывающий пускатель замыкает одновременно свои силовые контакты ПМ-13, а в схеме управления его контакт ПМ-4 подключает на удержание обмотку пускателя ПМ. Таким образом предотвращается разрыв цепи обмотки пускателя от действия пружины самовозвратного контакта Кн1.
Двигатель будет работать до разрыва цепи управления одним из способов:
• нажатием кнопки “Стоп”;
• защитным отключением от токового реле перегрузки.

Дистанционное управление трехфазным двигателем
Многим двигателям, установленным на станках, достаточно местного управления. Но отдельным устройствам, наподобие погружных насосов, требуется дистанционное управление, иногда даже с разных мест.
Для этого в электрическую схему управления двигателя достаточно добавить еще одну сдвоенную кнопку (Пуск-д, Стоп-д). Ее следует смонтировать на удаленном рабочем месте и подключить отдельным кабелем или проводами в защитном кожухе.

Контакты “Кн1д” соединяются жилами кабеля по параллельной схеме с одноименными контактами Кн1, а нормально замкнутый контакт “Стоп-д” врезается последовательно с Кн2.
Для этого жилы кабеля на удаленном рабочем месте подсоединяются к кнопке Кн2д и подводятся к кнопке “Стоп”. С любого контакта Кн2 отключают провод от действующей схемы и подключают его (желательно через клеммник) с одним из кончиков кабеля от кнопки дистанционного останова Кн2д. Второй кончик от удаленной кнопки подключают на освободившийся контакт Кн2.

Особенности управления однофазным двигателем
Описанные выше алгоритмы полностью пригодны для работы однофазных устройств. Электрическая схема для их управления упрощается: напряжение к электродвигателю подключается однофазным пускателем через обмотку однофазного токового реле.

Отправить заявку или сообщение Вы можете через форму обратной связи, или позвонить +7 (495) 545-44-32.

голоса
Рейтинг статьи
Читать еще:  Чем отмыть картера двигателя
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector