17 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Двигатель адп 362 схема подключения

Какие существуют схемы подключения электродвигателей постоянного тока

В домашнем хозяйстве редко встретишь мотор, работающий на постоянном токе. Зато они всегда устанавливаются в детских игрушках, которые летают, ездят, шагают и т.д. Всегда они стоят в автомобилях: в различных приводах и вентиляторах. В электротранспорте чаще всего используют тоже их.

Другими словами, применяются двигатели постоянного тока там, где требуется достаточно широкий диапазон регулирования скорости и точность ее поддержания.

Электродвигатели постоянного тока

Электрическая мощность в моторе преобразуется в механическую, заставляющую его вращаться, а часть этой мощности расходуется на нагревание проводника. Конструкция двигателя электрического постоянного тока включает якорь и индуктор, которые разделяют воздушные зазоры. Индуктор, состоящий из добавочных и главных полюсов, и станины, предназначен для создания магнитного поля. Якорь, собранный из отдельных листов, обмотка рабочая и коллектор, благодаря которому постоянный ток подводится к рабочей обмотке, образуют магнитную систему. Коллектор – это насаженный на вал двигателя цилиндр, собранный из изолированных друг от друга медных пластин. К его выступам припаиваются концы обмотки якоря. Ток с коллектора снимается при помощи щеток, закрепленных в определенном положении в щеткодержателях, благодаря чему обеспечивается нужный прижим на поверхность коллектора. Щетки с корпусом двигателя соединяются с помощью траверса.

Щетки, в процессе работы, скользят по поверхности вращающегося коллектора, переходя от одной его пластины к другой. При этом, в параллельных секциях обмотки якоря происходит изменение тока (когда щетка накоротко замыкает виток). Процесс этот называют коммутацией.

Под влиянием своего магнитного поля, в замкнутой секции обмотки возникает ЭДС самоиндукции, вызывающая появление дополнительного тока, который на поверхности щеток распределяет неравномерно ток, что приводит к искрению.

Частота вращения – одна из важнейших его характеристик. Ее регулировать можно тремя способами: изменяя поток возбуждения, изменяя величину подводимого напряжения к двигателю, изменяя сопротивление в якорной цепи.

Два первых способа встречаются намного чаще третьего, ввиду его неэкономичности. Ток возбуждения регулируется при помощи любого устройства, у которого возможно изменять активное сопротивление (например, реостата). Регулирование при помощи изменения напряжения требует наличие источника постоянного тока: преобразователя или генератора. Такое регулирование применяют во всех промышленных электроприводах.

Торможение электрического двигателя постоянного тока

Для торможения электроприводов с ДПТ также есть три варианта: торможение противовключением, динамическое и рекуперативное. Первое происходит за счет изменения полярности тока в обмотке якоря и напряжения. Второе происходит благодаря замыканию накоротко (через резистор) обмотки якоря. Электрический двигатель при этом работает как генератор, преобразуя в электрическую, запасенную им механическую энергию, которая выделяется в виде тепла. Это торможение сопровождается мгновенной остановкой двигателя.

Последнее происходит, если электрический мотор, включенный в сеть, вращается со скоростью, которая выше скорости холостого хода. ЭДС обмотки двигателя в этом случае, превышает значение напряжении я в сети, что приводит к изменению на противоположное направление тока в обмотке мотора, т.е. двигатель отдает в сеть энергию, переходя в режим генератора. Одновременно возникает тормозной момент на валу.

Преимущества двигателей постоянного тока

Сравнивая их с асинхронными моторами, нужно отметить отличные пусковые качества, высокую (до 3000 об/мин) частоту вращения, а также хорошую регулировку. Из недостатков отметить можно? Сложность конструкции, низкую надежность, высокую стоимость и затраты на ремонт и обслуживание.

Принцип действия ДПТ

ДПТ, как и любой современный мотор, работает на основе «Правила левой руки», с которым все знакомы еще со школы и закона Фарадея. При подключении тока к нижней обмотке якоря в одном направлении, а к обмотке верхней – в другом, якорь начинает вращаться, а уложенные в его пазах проводники – выталкиваться магнитным полем статора или обмоток корпуса двигателя постоянного тока. Вправо выталкивается нижняя часть, а влево – верхняя. В результате якорь вращается до тех пор, пока его части не поменяются местами. Чтобы добиться непрерывного вращения, необходимо полярность обмотки якоря регулярно менять местами. Как раз этим и занимается коллектор, коммутирующий при вращении обмотки якоря. На коллектор от источника подается напряжение через пару прижимных щеток из графита.

Принципиальные схемы ДПТ

Двигатель переменного тока подключается просто, в отличие от ДПТ. Обычно у таких двигателей высокой и средней мощности имеются отдельные выводы в клеммной коробке (от обмотки и якоря). На якорь обычно подается полное напряжение, а на обмотку — ток, регулировать который можно реостатом или напряжением переменным. От величины тока, имеющегося на обмотке возбуждения, прямопропорционально зависят обороты двигателя переменного тока.

В зависимости от того, какая используется схема подключения электродвигателя постоянного тока, двигатель электрический может быть постоянного тока, разделяют на самовозбуждающиеся и с независимым возбуждением (от отдельного источника).

Схема для подключения двигателя с возбуждением параллельным

Она аналогична предыдущей, но не имеет отдельного источника питания.

Когда требуется большой пусковой ток, применяют двигатели с возбуждением последовательным: в городском электротранспорте (троллейбусах, трамваях, электровозах).

Токи обоих обмоток в этом случае одинаковы. Недостаток – требуется постоянная нагрузка на вал, поскольку при ее уменьшении на 25%, резко увеличивается частота вращения и происходит отказ двигателя.

Есть еще моторы, которые крайне редко используются — со смешанным возбуждением. Их схема представлена ниже.

Электродвигатель постоянного тока с параллельным возбуждением

Под понятием «возбуждение» понимают создание в электрических машинах магнитного поля, которое необходимо, чтобы заработал двигатель. Схем возбуждения несколько:

  • С независимым возбуждением (питание обмотки происходит от постороннего источника).
  • Электродвигатель постоянного тока с параллельным возбуждением (источник питания обмотки возбуждения и якоря включены параллельно) – шунтовые.
  • С последовательным возбуждением (обе обмотки включены последовательно) – сериесные.
  • Со смешанным возбуждением – компаундные.

Бесщеточные моторы

Но, двигатель со щетками, которые быстро изнашиваются и приводят к искрению, не может использоваться там, где необходима высокая надежность, поэтому среди электротранспорта (электровелосипедов, скутеров, мотоциклов и электромобилей) наибольшее применение нашли бесщеточные электродвигатели. Они отличаются высоким КПД, невысокой стоимостью, хорошей удельной емкостью, длительным сроком службы, малыми размерами, бесшумной работой.

Работа этого двигателя основывается на взаимодействии магнитных полей электромагнита и постоянного. Когда за окном 21 век, а вокруг полно мощных и недорогих проводников, логично заменить механический инвертор цифровым, добавить датчик положения ротора, решающий в какой момент на конкретную катушку необходимо подать напряжение, и получить бесщеточный электродвигатель постоянного тока. В качестве датчика чаще используется датчик Холла.

Поскольку в этом двигателе удалены щетки, он не нуждается в регулярном обслуживании. Управляется двигатель постоянного тока при помощи блока управления, позволяющего изменять частоту вращения вала мотора, стабилизировать на определенном уровне обороты (независимо от имеющейся на валу нагрузки).

Читать еще:  Газовый двигатель ямз что это

Состоит блок управления из нескольких узлов:

  • Системы импульсно-фазового управления СИФУ.
  • Регулятора
  • Защиты.

Подключение электродвигателя

Время на чтение:

В промышленности наибольшее распространение получили трехфазные асинхронные двигатели. Такие привода обладают массой достоинств, как, например, жесткая характеристика. Это выражается в том, что при увеличении нагрузки и снижении оборотов крутящий момент резко возрастает. Схема подключения трехфазного асинхронного двигателя имеет свои особенности, которые необходимо учитывать при монтаже и ремонте устройств.

Условия для подключения электродвигателя

Основным условием для нормальной работы трехфазных двигателей является стабильность напряжения и тока в каждой из фаз электрической сети. Обрыв хотя бы одной фазы приведет к тому, что двигатель потеряет значительную часть мощности и при нагрузке на валу свыше 50 % нормативной остановится и выйдет из строя. Пуск на двух фазах возможен только при полном отсутствии нагрузки и только в то время, когда ротор сохраняет хотя бы небольшую угловую скорость.

Асинхронный двигатель

К сведению! В момент пуска асинхронный двигатель потребляет ток, в 3-5 раз превышающий номинальный до тех пор, пока ротор не наберет определенные обороты. Это явление исходит из принципа работы двигателя.

Таким образом, если в рабочем режиме ток двигателя позволяет использовать обычные автоматические выключатели, то для обеспечения нормального пуска коммутацию следует производить через мощный контактор (магнитный пускатель).

Магнитный пускатель

В отдельных случаях возможно подключение трехфазного двигателя в бытовую однофазную сеть. При этом сильно падают мощностные характеристики. Такая ситуация возникает очень часто, когда необходимо использовать промышленный привод в бытовых условиях. Используя специальную схему включения, обеспечивают нормальную работу мотора с учетом снижения мощности.

Как подготовить для подключения

Для правильного включения трехфазного двигателя необходимо помнить, что существует несколько схем соединения обмоток, среди которых:

  • «Звезда». Одни концы обмотки соединяют вместе, а другими подключаются к фазным проводам сети;
  • «Треугольник». Все три обмотки соединяются последовательно — конец каждой обмотки с началом следующей. Напряжение сети подается на точки соединения.

Обратите внимание! Для получения одинаковой мощности при соединении типа «звезда» требуется напряжение в √3 раз больше, чем при «треугольнике». Для двигателей, у которых допускается произвольное переключение обмоток, на шильдике обязательно указывается рабочее напряжение «220/380» или «127/220». Первое значение относится к соединению «треугольник», второе к «звезде».

В таких электродвигателях на клеммную колодку попарно в три ряда выведены начало и концы всех обмоток:

  • начало первой обмотки — конец второй;
  • начало второй — конец третьей;
  • начало третьей — конец первой.

Колодка двигателя, соединение «треугольник»

Для соединения «звезда» подключают один ряд из трех клемм двумя перемычками, а для соединения «треугольник» замыкают каждую пару тремя перемычками.

Как правильно подсоединить электродвигатель

От правильности включения обмоток электродвигателя зависит как ток потребления, так и направление вращения. Ток потребления вырастает, если двигатель, у которого на данное напряжение сети обмотки должны быть соединены «звездой», переключить на «треугольник». Такой режим работы является аварийным и приведет к выходу из строя.

Из теории трехфазного тока известно, что направление вращения электрической машины можно изменить, поменяв любые две фазы из трех местами. На этом основана схема реверсирования трехфазных асинхронных электродвигателей.

Важно! Схема реверсирования должна обеспечивать невозможность переключения фаз до момента остановки двигателя (прекращения подачи питания). В противном случае произойдет короткое замыкание сети.

Как подключить с 3 или 6 проводами

В большинстве случаев соединение двигателя с питающей сетью производится при помощи трех проводов. Даже если на клеммную колодку выведено шесть проводов, что соответствует трем парам обмотки, то путем соединения в нужную схему для подключения к питанию используется три провода.

Для мощных устройств учитывается, что асинхронный двигатель в момент запуска потребляет в несколько раз больший ток, поэтому используется сложная схема запуска, в которой в момент пуска обмотки подключаются «звездой», а после того как ротор наберет необходимые минимальные обороты, обмотки переключаются в «треугольник».

Шестипроводная схема включения

Важно! Для таких схем включения нужно подсоединять все шесть проводов обмоток электрической машины.

Схема подключения асинхронного электродвигателя

Асинхронные двигатели бывают не только трехфазные. Разработаны конструкции, которые могут подключаться в бытовую однофазную сеть. Схема электродвигателя для подключения к однофазной сети состоит из двух обмоток — рабочей и пусковой. Пусковая обмотка предназначена для формирования внутри статора вращающегося магнитного сдвига в момент пуска. Это необходимо для обеспечения начала вращения ротора. Фазный сдвиг осуществляется за счет включения пусковой обмотки через конденсатор.

Подключение однофазного двигателя

После того как ротор наберет обороты, пусковая обмотка уже не нужна. Маломощный однофазный привод будет работать нормально в таком режиме, но мощность двигателя возрастет, если оставить в работе пусковую обмотку, включенную через рабочий конденсатор.

Обратите внимание! Емкость рабочего конденсатора меньше, чем у пускового, так как нет необходимости сильного сдвига фазы. При высокой емкости через пусковую обмотку будет проходить большой ток, что приведет к ее перегреву.

В трехфазную электрическую сеть электромоторы включаются согласно их характеристикам и напряжению сети. Здесь главное — правильно выполнить необходимые соединения обмоток в соответствии с напряжением питания.

Нестандартная схема подключения трехфазного асинхронного электродвигателя применяется при использовании промышленных устройств в быту.

Подсоединение производят по нескольким вариантам:

  • с использованием частотного преобразователя;
  • через конденсатор.

Электронный частотный преобразователь (инвертор) позволяет не только сохранить мощность, но и улучшить целый ряд характеристик, недостижимых при включении по стандартной схеме. Это:

  1. Плавный пуск.
  2. Регулирование мощности.
  3. Регулирование оборотов.

Частотный преобразователь преобразует однофазное питание в полноценную трехфазную сеть, в которой можно менять частоту, амплитуду, выполнять стабилизацию тока и напряжения в фазных проводах.

Обратите внимание! Большой недостаток частотных инверторов — их высокая стоимость.

Схема с конденсатором разработана таким образом, чтобы получить на одной из трех обмоток сдвиг фазы, достаточный для работы двигателя. Конденсаторная электросхема работоспособна как для «треугольника», так и для «звезды». Включение электромотора через конденсатор является наиболее простым решением проблемы, но имеет несколько недостатков:

  • максимальная мощность двигателя снижается до 50 %;
  • емкость фазосдвигающего конденсатора сильно зависит от нагрузки на электродвигатель.

То есть при работе на холостом ходу емкость должна быть минимальна и достигать максимума на полной мощности двигателя. Наиболее высокий ток потребления у асинхронного двигателя в момент запуска.

Подключение в однофазную сеть

Обратите внимание! На практике используют усредненное значение емкости для наиболее ожидаемого режима работы, поскольку малое значение не даст необходимую мощность, а высокое приведет к перегреву обмоток.

Читать еще:  Холостой ход двигателя электронное

Правильный расчет емкости учитывает напряжение сети, схему включения обмоток и мощность двигателя. Конденсаторная схема включения должна предусматривать запуск двигателя через отдельный пусковой конденсатор, емкость которого должна быть выше рабочей в 2-3 раза.

Принципиальный момент — реверс обеспечивается подключение конденсатора к любой другой обмотке.

Однолинейная схема подключения электродвигателя

В энергетике часто применяются однолинейные схемы, в которых все линии питания вне зависимости от количества проводов и фаз обозначаются одной линией. Однолинейный чертеж не перегружен мелкими деталями, и это упрощает его чтение.

По однолинейной схеме удобно получать общее представление о работе и устройстве электроустановки. Трехфазные электродвигатели также обозначаются на однолинейных схемах. Важно учитывать при этом, что при разных способах коммутации фаз необходимо на чертеже указывать каждую фазу во избежание путаницы.

Чтобы подключать электрический двигатель к сети важно правильное определение назначения выводов обмоток и уже на основании имеющихся данных количество фаз, напряжение, мощность. Немаловажно выбрать наиболее подходящую схему включения.

СХЕМА ПОДКЛЮЧЕНИЯ ЭЛЕКТРОДВИГАТЕЛЯ

Схема подключения электродвигателя во многом определяется условиями его эксплуатации.

Например, подключение «звездой» обеспечивает большую плавность работы, но дает потерю мощности по сравнению с подключением «треугольником».

Иногда бывает нужно подключить трехфазный двигатель в однофазную сеть. В любом случае рассматривать этот вопрос надо по порядку. (Здесь и далее разговор пойдет про асинхронный электродвигатель как наиболее часто встречающийся).

На рисунке 1 представлены две схемы соединения обмоток двигателя.

  1. Схема соединения «звездой». Начала (или концы) всех обмоток соединяются в одной точке, оставшиеся концы (или начала) подключаются каждый к своей фазе (L1, L2, L3).

Эта схема не позволяет использовать электрический двигатель на полную мощность, но имеет меньший пусковой ток.
Соединение обмоток электродвигателя «треугольником». При этом начало одной обмотки соединяется с концом другой. Вершины получившегося треугольника подключаются к цепи трехфазного тока.

В отличие от соединения «звездой» эта схема позволяет использовать всю паспортную мощность двигателя, но имеет больший пусковой ток.

  • Подключение двигателя к сети одинаково, вне зависимости от способа соединения обмоток, поэтому, рассказывая про различные его подключения я буду использовать приведенное здесь обозначение электродвигателя, чтобы лишний раз не затруднять восприятие схемы.
  • Подключение двигателя к сети производится через электромагнитный пускатель. Схемы таких подключений приведены здесь.

    Соединение обмоток двигателя в ту или иную схему производится соответствующей установкой перемычек в клеммной коробке. (См. на соответствующих рисунках под схемами соединений). Для тех, кто привык разбираться во всем досконально на нижней части рисунка 1.с приведена схема подключения обмоток электродвигателя к соответствующим клеммам.

    Следует заметить, что сказанное относится к двигателям не подвергавшимся переделкам (ремонту) и имеющим штатную маркировку обмоток.

    В противном случае нужно самостоятельно найти обмотки, их начала и концы. Как это сделать поясняет рисунок 2.

    1. Прозваниваем обмотки. Для этого один измерительный щуп мультиметра в режиме измерения сопротивления подсоединяем к любой клемме (выводу), другим последовательно проверяем остальные. Точки, сопротивление между которыми составляет единицы или доли ом (близко к нулю), являются выводами одной обмотки.
    2. Отмечаем найденную обмотку, аналогичным образом прозваниваем оставшиеся выводы, находим остальные.
    3. Определяем начала и концы обмоток электродвигателя. Для этого соединяем любые две последовательно, подаем на них переменное напряжение. Для безопасности лучше ограничиться его величиной 12-36 Вольт. К оставшейся подключаем мультиметр в режиме измерения переменного напряжения. Наличие напряжения свидетельствует, что обмотки соединены синфазно, то есть конец одной подключен к началу другой.

    Этот вариант как раз изображен на рисунке. Отсутствие напряжения говорит о том, что обмотки соединены концами (или началами). Маркируем их соответствующим образом. Повторяем указанные действия для оставшейся обмотки, соединенной с любой из первых двух.

    ПОДКЛЮЧЕНИЕ ТРЕХФАЗНОГО ДВИГАТЕЛЯ В ОДНОФАЗНУЮ СЕТЬ

    Такая необходимость возникает достаточно часто. Сразу замечу — мощность электродвигателя при этом теряется.

    Схема подключения трехфазного электродвигателя в однофазную (220 В) сеть требует наличия фазосдвигающего конденсатора Ср. Значение его емкости в микрофарадах (мкФ) для двигателей мощностью до 2,5 кВт можно определить умножив мощность двигателя в кВт на 100.

    Конечно, для этого существует специальная формула, но описанным образом емкость можно получить с достаточной степенью приближения.

    Наиболее простая схема приведена на рисунке 3.

    В зависимости от положения переключателя SB1 будет меняться направление вращения электродвигателя. Подключение двигателя к сети производится выключателем F, в качестве которого лучше использовать автоматический выключатель.

    Сразу после его включения для старта (набора оборотов) нужно подключить дополнительный конденсатор Сдоп, емкостью в 2-3 раза большей, чем Сраб. Это достигается нажатием кнопки SB2, которая должна быть отпущена сразу после набора электродвигателем оборотов.

    Резистор R служит для разряда конденсатора Сдоп после его отключения. Значение этого резистора некритично и может быть порядка 100 — 500 кОм.

    По этой схеме можно подключать электродвигатели с по схеме как «треугольник» так и «звезда».

    Следующая схема (рис.4) использует подключение электродвигателя через пускатель. Сделано это так, чтобы включение можно было производить одним нажатием. Давайте посмотрим как эта схема работает.

    При нажатии кнопки «пуск» срабатывает пускатель КМ1. Одними своими контактами он подключает дополнительный конденсатор Сдоп, другими — включает пускатель КМ2, который подает на электродвигатель напряжение (контактная группа КМ2.1) и одновременно блокирует контакты КМ1.1 первого пускателя.

    После набора оборотов кнопка пуск отпускается, пускатель КМ1 отключается, отключая Cдоп. Напряжение на пускатель КМ2 подается им самим, он находится в замкнутом состоянии до нажатия кнопки «стоп», размыкающей цепь питания.

    Катушки пускателей должны быть рассчитана на напряжение 220В.

    © 2012-2021 г. Все права защищены.

    Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

    Устройство для управления реверсивным асинхронным двухфазным двигателем

    Изобретение относится к электротехнике и может быть использовано в электромашинных системах автоматики . Целью изобретения является расширение диапазона плавного регулирования скорости и улучшение массогабаритных показателей. Устройство для управления реверсивным асинхронным двухфазным двигателем (АД) 7 содержит импульсный полупроводниковый преобразователь 1, состоящий из трех диодг-икн

    159 4 Н 02 P 7/42

    Н А ВТОРСКОМ,Ф СВИДЕТЕЛЬСТВУ г, 1

    ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР

    ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И OTHPblTHA (21 ) 36547 1 6/24-07 (22) 29.07.83 (46) 15.11.86. Бюл. Ф 42 (71) Ленинградский ордена Трудового

    Красного Знамени институт точной механики и оптики (72) В.И. Хрисанов и С.А.- Белов (53) 621.318.719.2(088.8) (56) Коссов О.А. Усилители мощности на транзисторах в режиме переключения. М.: Энергия, 1971, с. 247-255.

    Читать еще:  Что впрыскивается в цилиндр двигателя

    Лопухина Е.М., Сомихина Г.С.

    Асинхронные микромашины с полым ротором. М.: Энергия, 1967, с. 256-263. (54) УСТРОЙСТВО ДЛЯ УПРАВЛЕНИЯ PEBEPCHBHbIM АСИНХРОННЫМ ДВУХФАЗНЫМ ДВИГАТЕЛЕМ (57) Изобретение относится к электротехнике и может быть использовано в электромашинных системах автоматики. Целью изобретения является расширение диапазона плавного регулирования скорости и улучшение массогабаритных показателей. Устройство для управления реверсивным асинхронным двухфазным двигателем (АД) 7 содержит импульсный полупроводниковый преобразователь 1, состоящий из трех диод1270861

    15 но-транзисторных ключей (К) 2, 3, 4 переменного тока. К 2,3,4 соединены между собой последовательно и предназначены для подключения к источнику постоянного тока. К К 3,4 подключены обмотки 5,6 АД 7. Управляющие цепи К 2,3,4 подключены к схеме 8 управления. Схема 8 содержит задатчик входного сигнала, выходы которого подключены ко входам индикатора полярности входного сигнала и блоку формирования абсолютного значения входного сигнала. Выход блока фазового сдвига соединен с первыми входами блоков сравнения, вторые входы которых связаны с выходом блока форми- рования абсолютного значения входного сигнала. Выходы индикатора и блоков сравнения подключены ко входам блока распределения импульсов управления. Выходы блока распределения импульсов управления подключены к одному входу блока гальванической развязки.и усиления импульсов управления через блок управления и защиты, а к двум другим входам блока гальванической развязки непосредственно, выходы которого являются выходами схемы 8. При отсутствии входного сигнала задатчика 9 (U О, фиг. 3) на выходе блока 13 формируется сигнал l, а на выходе блоков 11 и 12 формируются прямоугольные напряжения и U, смещенные по фазе в соот-, 12

    1 ветствии с опорными напряжениями U,

    g U блока 10 и имеющие одинаковый

    1О коэффициент заполнения, определяемый уровнем входного сигнала U . В 10 интервале времени 8 и U„z равные «1», а на второй вход — сигнал

    U«, равныи «0». В результате работы 15 блока 15 íà его втором выходе будет сигнал U, равный «1», а на первом выходе сигнал U, равный «0». На выходе блока 16 будет сигнал Ц1, равный «1». После прохождения этих сиг- 20 налов через блок 17 ключи 2 и 4 будут включены, а ключ 3 заперт, В результате в рассматриваемом интервале времени (о(, Изобретение относится к электротехнике и может быть использовано ДЛЯ привода автоматических манипуляторов , автономных интегральных роботов и т.п

    Подключение электрооборудования и средств облегчения пуска дизельного двигателя

    Подключение электрооборудования.

    В связи с тем, что стартер дизельного двигателя потребляет больший ток (по сравнению со стартером карбюраторного двигателя)
    для снижения падения напряжения на проводах и обеспечения более высоких оборотов прокручивания стартером при пуске необходимы провода, соединяющие аккумуляторные батареи со стартером и включателем «массы» заменить на более толстые (сечением 50 мм2).

    Кроме того, должны быть заменены провода, подсоединяющие реле стартера «К7» со стартером, эти провода должны иметь сечение 4 мм2.

    Общий вид электрической схемы подключения двигателя (рис.12а, 12б).

    Подключение средств облегчения пуска дизельного двигателя.

    При комплектации двигателей свечами накаливания и блоком управления свечами накаливания БУСН 251.3763 (12В, производства ОАО «ЭЛАРА» г. Чебоксары) рекомендуемая схема подключения рис. 12 а.

    При комплектации двигателей свечами накаливания и блоком управления свечами накаливания МУСН -01 (12В, производства ООО «БЕЛКАРПРОМ» г. Минск) рекомендуемая схема подключения рис. 12б.

    Принцип работы блока управления свечами накаливания (БУСН):

    При установке ключа зажигания в положение ЗАЖИГАНИЕ блок должен обеспечивать подключение к аккумуляторной батарее четырех свечей накаливания (блок должен замкнуть контакты «12В»), а также контрольной лампы СВЕЧИ, мощностью не более 1,3Вт.

    Одновременно с установкой ключа зажигания в положение ЗАЖИГАНИЕ блок должен начать отсчет времени предварительного подогрева tпп и времени надежного отключения tно=(tпп+tсо).
    По окончании tпп контрольная лампа СВЕЧИ должна погаснуть.
    При переводе ключа зажигания в положение СТАРТЕР во время отработки tпп свечи накаливания должны оставаться подключенными.
    При обратном переводе ключа зажигания в положение ЗАЖИГАНИЕ свечи накаливания должны отключиться через tсо=(120±20) с.

    При этом:
    -если ключ зажигания не переводится в положение СТАРТЕР, должно произойти отключение свечей зажигания по окончании времени tно;
    -новое включение свечей накаливания должно происходить после перевода ключа зажигания в положение «0» и повторной установки в положение ЗАЖИГАНИЕ.

    Принцип работы модуля упраления свечами накаливания (МУСН-01):

    Запуск без подогрева.
    Блоки не должны включать реле и лампу при переводе замка-выключателя зажигания из положение «0» в положение «I» на время менее 2±0,5с и далее в положение «II» и обратно в положение «I» (произведен быстрый запуск двигателя).

    Предпусковой подогрев.
    По прошествии 2±0,5с с момента подачи напряжения питания на клемму 5 (при переводе замка-выключателя зажигания из положения «0» в положение «I») модули должны производить включение реле свечей накаливания и контрольной лампы на время предпускового подогрева, равное 20±2с.

    Ожидание запуска.
    После времени предпускового подогрева 20±2с модули должны оставлять включенным реле свечей накаливания и переходить в режим ожидания запуска, переводить контрольную лампу в прерывистый режим с частотой 1±0,5Гц и ждать 30±2с запуска двигателя

    Запуск двигателя.
    После запуска двигателя в период ожидания запуска, при поступлении напряжения «+СТ» на клемму 4 модули должны отключать контрольную лампу и отрабатывать фиксированное время накала свечей, равное 180±5с с момента снятия напряжения «+СТ» с клеммы 4.
    Модули должны оставлять реле включенным на протяжении наличия напряжения «+СТ» на клемме 4 и в течение 180±5с с момента снятия напряжения «+СТ» с клеммы 4.

    Ранний запуск.
    При поступлении напряжения «+СТ» на клемму 4 в период предпускового подогрева модули должны выключать контрольную лампу и отрабатывать фиксированное время накала свечей, равное 180±5с, затем отключать реле.

    Отсутствие запуска.
    Если в период ожидания запуска не поступило напряжение «+СТ» на клемму 4 (запуск не был произведен), то модули должны выключать контрольную лампу и реле свечей накаливания.

    Неразмыкание контактов реле.
    Если после отработки полного цикла работы напряжение на клемме 7 присутствует (наличие напряжения свидетельствует о не размыкании контактов реле), то модули должны включать контрольную лампу в прерывистом режиме с частотой 2±1 Гц при наличии напряжения на клемме 5.

    Незамыкание контактов реле.
    Если при подаче напряжения на клемму 5 и работе по заданному алгоритму напряжение на клемме 7 отсутствует (не замыкаются контакты реле), то модули должны на весь цикл работы подавать напряжение на клемму 2 в соответствии с алгоритмом и включать контрольную лампу в прерывистом режиме: одно включение с длительностью 0,5с на периоде 3с до конца цикла.

    голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector