2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое высокая нагрузка на двигатель

Большая Энциклопедия Нефти и Газа

Допустимая нагрузка — двигатель

Допустимая нагрузка двигателя может ограничиваться не только его нагреванием и моментом, который двигатель может развить, но в некоторых случаях и механической прочностью двигателя, а у двигателей постоянного тока — предельным током, безопасным для коллектора. [1]

Допустимая нагрузка двигателя определяется нагреванием его обмоток, которое зависит от проходящего по ним тока. Для полного использования двигателя при регулировании его скорости необходимо постоянство тока нагрузки. При номинальном токе двигатель используется полностью и предполагается, что охлаждение двигателя на всех скоростях вращения не меняется. [2]

Допустимая нагрузка двигателя определяется нагреванием его обмоток, которое зависит от проходящего по ним тока. Для полного использования двигателя при регулировании его скорости необходимо постоянство тока нагрузки. При номинальном токе двигатель используется полностью. [3]

Допустимая нагрузка двигателя при регулировании скорости зависит и от метода регулирования. Изменение нагрузочного момента от скорости у различных производственных механизмов различно. Так, например, многие механизмы требуют регулирования при постоянном моменте. С другой стороны, существуют механизмы, у которых регулирование скорости производится с постоянной мощностью. В качестве примеров подобного механизма можно привести токарный станок, у которого в процессе обработки данной детали желательно поддержание постоянства линейной скорости или скорости резания и усилия резания. [4]

Допустимая нагрузка двигателя ограничивается его нагревом. Нагрев в свою очередь зависит от потерь энергии в двигателе, а последние определяются главным образом величиной тока, потребляемого двигателем. [5]

Допустимая нагрузка двигателя при регулировании скорости зависит и от способа регулирования. [6]

Допустимая нагрузка двигателя ограничивается степенью его нагрева. Степень нагрева в свою очередь зависит от потерь энергии в двигателе, а последние определяются главным образом величиной тока, потребляемого двигателем. [7]

Допустимая нагрузка двигателя может ограничиваться не только его нагреванием и моментом, который двигатель может развивать, но в некоторых случаях и механической прочностью двигателя, а у двигателей постоянного тока — предельным током, безопасным для коллектора. [8]

Допустимой нагрузкой двигателя в этой схеме является номинальный момент. Однако при малых нагрузках характеристики по-прежнему асимптотически приближаются к оси ординат и, следовательно, имеют малую жесткость. [9]

Таким образом, допустимая нагрузка двигателя определяется его температурой нагревания, так как с увеличением нагрузки двигателя возрастают потери в нем и значение туст. У правильно выбранного двигателя установившаяся температура перегрева не должна превышать допустимой температуры перегрева изоляции. [10]

Из изложенного выше следует, что допустимая нагрузка двигателя определяется его температурой нагревания, поскольку с увеличением нагрузки двигателя возрастают потери в нем и значение туст. У правильно выбранного двигателя установившаяся температура перегрева не должна превышать допустимой температуры перегрева изоляции. [11]

Зависимости k — f ( UB) для определения допустимой нагрузки двигателей при различных про-должительностях включения. [12]

Приведенные выше основные понятия из теории электропривода используют для определения допустимых нагрузок двигателей и других задач эксплуатации. [13]

По усредненной кривой 1 на рис. 17 можно видеть, что допустимая нагрузка двигателей серии КТ и КТК в длительном режиме весьма мала. Фактически ряд двигателей этих ранее выпускавшихся серий был сконструирован таким образом, что для них недопустим длительный режим работы даже вхолостую. Поэтому двигатели серий КТ и КТК использовать при ПВ60 % не следует. [14]

Так как при регулировании поток двигателя остается постоянным ( Ф Фн), допустимая нагрузка двигателя без учета изменения условий охлаждения постоянна М М — const. Наибольший ток шунтирующей части потенциометра / ш макс быстро увеличивается при уменьшении Rn, поэтому минимальная жесткость механических характеристик в рассматриваемой схеме ограничивается приемлемой мощностью потенциометра. Тем самым ограничивается и возможный при данных пределах изменения нагрузки и требуемой точности диапазон регулирования скорости. [15]

Режимы работы судового двигателя

Режимы работы двигателя на судне определяются величиной крутящего момента на коленчатом валу и частотой вращения.

К установившимся режимам относится работа на гребной винт или генератор при постоянной частоте вращения и неизменной нагрузке. Характер этих режимов зависит во многом от сопротивления воды движению судна.

Особыми установившимися режимами являются работа двигателя при увеличенных температурах наружного воздуха, повышенном сопротивлении в выпускном тракте вследствие засорения его сажей и осадками масла, работа с неполным числом цилиндров или при неисправном турбокомпрессоре, работа при плавании в битом льду, с ненормальным дифферентом, с поврежденным гребным винтом.

К неустановившимся режимам работы двигателя относятся работа при пусках, прогреве и остановках, работа при переходе с одного скоростного режима на другой (постановка и выборка орудий лова), работа на винт при разгоне судна, работа во время реверсирования судна или его циркуляции, работа на заднем ходу, работа на генератор при изменении электрической нагрузки.

Работа дизеля при увеличенном сопротивлении движению судна

Если сопротивление движению судна по каким-либо причинам увеличилось, например вследствие обрастания корпуса, плохой погоды, влияния мелководья или при буксировке трала, гребной винт становится более «тяжелым». Иначе говоря, он потребляет от двигателя при той же частоте вращения мощности, большую, чем при обычных условиях.

В установке с обычным гребным винтом фиксированного шага во избежание перегрузки двигателя снижают частоту вращения. На сколько нужно понизить частоту вращения, определяют в каждом конкретном случае в соответствии с инструкцией завода-изготовителя, в которой указываются предельные значения температуры выпускных газов, расхода топлива или максимального давления сгорания для каждого значения частоты вращения (ограничительная характеристика).

В установке с ВРШ нет необходимости снижать частоту вращения — можно лишь уменьшить шаг винта с таким расчетом, чтобы параметры двигателя, контролируемые по приборам, соответствовали номинальному режиму.

Наиболее тяжелым установившимся режимом является работа на швартовах. В этом случае сопротивление движению корпуса бесконечно велико.

В практике эксплуатации возможны случаи уменьшения сопротивления движению судна, например при плавании в балласте или при сильном попутном ветре. Гребной винт при этом становится «легче», т. е. несколько недогружает главный двигатель при номинальной частоте вращения.

Читать еще:  Чем вредна вода для двигателя

Выбор режима при увеличении сопротивления движению судна диктуется необходимостью сохранения тепловой и механической напряженности двигателя в нужных пределах. Показателем теплонапряженности является величина и характер изменения температуры в стенках поршней, цилиндровых втулок и крышек.
Так, температура зеркала цилиндра в районе первого поршневого кольца (при положении поршня в в. м. т.) не должна превышать 175° С во избежание разрушения масляной пленки и возникновения сухого трения. Температура поршней лимитируется в районе первого поршневого кольца из условий предотвращения его закоксовывания, на днище поршня из условий сохранения допускаемых тепловых напряжений и отсутствия коксо- и лакообразования со стороны, омываемой охлаждающим маслом.

Показателем механической напряженности является напряжения и деформации, возникающие в деталях от действия сил давления газов и сил инерции движущихся частей. Косвенно о механической напряженности можно судить по величине максимального давления сгорания и жесткости работы двигателя, под которой понимают интенсивность повышения давления в цилиндре во время сгорания топлива.

Большое влияние на механическую напряженность коленчатого вала оказывают крутильные колебания. Коленчатый вал вместе с другими присоединенными к нему движущимися поступательно и вращающимися деталями представляет собой упругую систему, отдельные участки которой при работе двигателя закручиваются и раскручиваются в разных направлениях. Такие «вынужденные» крутильные колебания наблюдаются на всех режимах, и вызываются они главным образом периодическим действием сил давления газов в цилиндрах. Иногда оказывает влияние и неравномерный крутящий момент гребного винта, периодичность изменения которого зависит от числа лопастей.

Упругая вращающаяся система валов обладает собственными колебательными свойствами — частотой свободных колебаний и их формой. Эти свойства зависят только от расположения масс деталей и упругости соединяющих их участков вала. Свободные колебания не развиваются при работе двигателя, их можно лишь возбудить искусственно, если кратковременно приложить крутящий момент.

После прекращения действия момента система начинает колебаться с определенной частотой, но колебания быстро затухают благодаря внутреннему трению в материале валов. В зависимости от того, в каком месте вала приложить момент, могут возникнуть колебания разных форм. При одной из форм — одноузловой — концы валовой линии закручиваются в разных направлениях, а в средней части одно из сечений не участвует в колебаниях (узел).

При двухузловой форме оба конца валовой линии закручиваются в одну сторону, а ее средняя часть — в другую; таким образом образуются два узла. Возможны также трехузловая, четырехузловая и другие формы колебаний. Чем выше форма колебаний, тем больше частота свободных колебаний. В обычных установках практическое значение могут иметь одноузловые и двухузловые колебания; их частота соответственно составляет 200 — 3000 и 900 — 10000 колебаний в минуту.

При увеличении или уменьшении частоты вращения вала двигателя соответственно изменяется и частота вынужденных колебаний от сил давления газов в цилиндрах. На некоторых режимах она совпадает с частотой свободных колебаний одно- или двухузловой формы. В результате развиваются резонансные колебания. Степень их опасности определяется расчетом еще при проектировании установки и проверяется специальным прибором (торсиографом) на одном из судов каждой серии. В случае, если напряжения не превышают допускаемой величины, никаких ограничений не накладывается.

Некоторое превышение напряжений говорит о необходимости назначить запретную зону. Продолжительная работа двигателя в этой зоне недопустима, так как может привести к разрушению валовой линии в одном из сечений из-за усталости материала вала. Возможно также повреждение зубьев шестерен редуктора. Внешне работа двигателя в запретной зоне может сопровождаться заметной вибрацией и шумами, но эти признаки обнаруживаются не всегда.

Запретные зоны отмечаются на тахометре красным сектором. Проход через запретную зону при увеличении или уменьшении частоты вращения осуществляется плавно, но быстро.

Значительное превышение напряжений при резонансах над допускаемыми напряжениями представляет опасность даже при кратковременной работе. В таких случаях дизелестроительным или судостроительным заводом принимаются меры борьбы с крутильными колебаниями. Можно, например, уменьшить ширину или диаметр маховика, и тогда запретная зона сместится в зону выше номинальной частоты вращения. Применяют и специальные устройства — демпферы и антивибраторы.

Общим показателем тепловой и механической напряженности дизеля является степень форсирования. Наиболее удобно оценивать степень форсирования величиной удельной поршневой мощности показывающей, сколько эффективных лошадиных сил приходится на 1 дм 2 площади поршня.

На долевых режимах удельная поршневая мощность, а следовательно, и тепловая и механическая напряженности резко снижаются. Но это не значит, что малые частота вращения и нагрузки являются наиболее благоприятными для двигателя. На таких режимах ухудшаются условия охлаждения и смазки, происходят забросы масла в выпускной коллектор. Поэтому продолжительная работа на малых нагрузках нежелательна. Некоторые заводы ограничивают минимальную нагрузку на дизель при разных значениях частоты вращения определенными величинами. Такое ограничение, например, введено для распространенного на флоте рыбной промышленности дизеля 8ДР43/61.

Работа двигателя при повышенной температуре наружного воздуха

На режимах, близких к предельно допустимой в эксплуатации мощности, двигатель чувствителен к параметрам наружного воздуха. Повышение температуры и влажности воздуха и снижение атмосферного давления приводят к уменьшению весового заряда воздуха, поступающего в цилиндры. В результате снижается мощность и экономичность, ухудшается тепловая и механическая напряженность. Наибольшее влияние оказывает температура воздуха.

По указанной причине дизелестроительные заводы гарантируют номинальную мощность при определенных внешних условиях. В СССР нормальными условиями, согласно ГОСТ 5733 — 51, считаются температура воздуха на впуске +15° С, барометрическое давление (760 мм рт. ст.) и относительная влажность 0,6. Некоторые заводы, например «Русский дизель», гарантируют номинальную мощность и при менее благоприятных условиях, в частности при температуре до +25° С (двигатель 8ДР43/61).

Каждый дизелестроительный завод в инструкции по эксплуатации двигателя регламентирует величину снижения мощности при изменении внешних условий. При отсутствии в инструкции соответствующих указаний можно руководствоваться следующими ориентировочными данными: мощность двигателя следует снижать на 3 — 5% при увеличении температуры наружного воздуха на каждые 10° С свыше 20° С.

Читать еще:  Хороший ремонт двигателя авто

Работа двигателя при выключенном цилиндре

При невозможности быстро устранить неисправность в одном из цилиндров допускается временная работа двигателя с отключенным цилиндром. Отключение неисправного цилиндра может сопровождаться только прекращением подачи в него топлива или демонтажем деталей движения. В последнем случае у двухтактного двигателя выпускные и продувочные окна закрывают либо специальными приспособлениями, либо путем подвешивания поршня на талях.

Эффективная мощность главных двигателей, работающих при постоянной частоте вращения (в установках с ВРШ), и дизель-генераторов снижается на величину индикаторной мощности отключенного цилиндра.

В установке с обычным винтом фиксированного шага необходимо снизить частоту вращения (об/мин) до значения

где nн — номинальное число оборотов; N — индикаторная мощность отключенного цилиндра; N — номинальная эффективная мощность дизеля.

Следует иметь в виду, что при отключенном цилиндре изменяется расположение запретной зоны от крутильных колебаний. Поэтому при работе дизеля следует особенно тщательно следить за его шумом и вибрацией.

Работа при трогании с места и разгоне судна

При трогании с места и разгоне судна, кроме сопротивления воды, необходимо преодолеть еще силу инерции массы судна. Следовательно, движущая сила и момент винта могут быть больше, чем при равномерном движении судна с заданной скоростью.

Если при трогании судна с места скорость вращения вала двигателя будет больше, то последний окажется перегруженным.

Быстрый разгон, позволяя быстрее достигнуть скорости полного хода судна, вызывает более высокую нагрузку двигателя или даже его перегрузку. При медленном разгоне судна вращающий момент постепенно достигает значения момента полного хода, и разгон судна совершается без перегрузки двигателя.

Работа на задний ход и при реверсировании винта

При работе двигателя на задний ход необходимо, чтобы углы открытия и закрытия клапанов газораспределительного механизмы и углы опережения подачи топлива в цилиндры были равны соответствующим углам при работе на передний ход.

Если предохранительные клапаны «стреляют» только при работе двигателя «Назад», то это указывает на увеличение угла опережения подачи топлива по сравнению с работой двигателя «Вперед».

При частоте вращения заднего хода, равной частоте вращения полного хода вперед, момент сопротивления может значительно превысить номинальный момент на валу двигателя, что приведет к перегрузке двигателя.

Большую опасность представляет увеличение напряжений в коленчатом валу на маневрах при торможении движения сжатым воздухом для ускорения процесса реверсирования, а также при разгоне двигателя на задний ход при продолжающемся движении судна вперед.

При движении судна полным ходом двигатель в процессе реверсирования должен остановить гребной винт (при выключенном двигателе судно по инерции продолжает движение и гребной винт вращается под действием потока воды за судном), удержать его в неподвижном положении и начать вращать в нужном направлении.
При этом на коленчатом валу создается крутящий момент значительно больше номинального, что может привести к поломке коленчатого вала. Для предотвращения перегрузки двигателя реверсирование необходимо осуществлять при возможно меньшей скорости судна.

ДОПУСТИМЫЕ РЕЖИМЫ РАБОТЫ ДВИГАТЕЛЕЙ

Двигатели допускают длительную работу с номинальной нагрузкой при отклонении напряжения от номинального в пределах от +10 до —5 %. При понижении напряжения на 5 % номинального ток статора при номинальной нагрузке станет на 5 % больше номинального. Возрастут потери в меди, но одновременно за счет снижения напряжения уменьшатся потери в активной стали. Поэтому суммарные потери и температуры в двигателе останутся примерно такими же, как и при номинальном напряжении.

При понижении напряжения более чем на 5 % номинального нагрузка двигателя должна быть ниже номинальной. Это объясняется тем, что повышение тока статора более чем на 5 % вызовет такое увеличение потерь в меди обмотки статора, которое не скомпенсируется снижением потерь в активной стали, и температура обмотки статора превысит максимально допустимую.

При повышении напряжения на 10 % номинального ток статора должен быть, как правило, уменьшен на 10 % номинального. При этом нагрузка на валу будет соответствовать номинальной. Увеличение температуры активной стали из-за повышения напряжения на 10 % опасности не представляет, а на обмотке оно отразится в меньшей степени, чем снижение ее нагрева в результате уменьшения тока статора. Повышение’напряжения на двигателе более чем на 10 % сверх номинального не рекомендуется из-за возможности перегрева активной стали, а для двигателей с напряжением 3 кВ и выше — и по надежности работы изоляции обмотки.

Допустимые режимы при изменении температуры входящего воздуха.Номинальной температурой входящего воздуха для двигателей, изготовленных по ГОСТ 183-74, считается 40 °С. Мощность двигателей при температуре охлаждающего воздуха выше номинальной должна быть уменьшена, а при температуре охлаждающего воздуха ниже номинальной может быть повышена согласно указаниям завода-изготовителя. Например, для двигателей АТД допустимая мощность изменяется в следующих пределах:

воздуха, °С. 50 45 40 35 25 20 15 и ниже

Мощность двигателя АТД,

% номинальной . 87,5 95 100 102 105 107,5 107,5

Минимальная температура входящего воздуха не нормируется.

При изменении частоты в пределах ±5 °/о двигатель может быть нагружен до номинальной мощности. Ток статора нагруженного двигателя при снижении частоты вначале из-за уменьшения нагрузки на валу снижается. Затем, достигнув минимального значения, начинает резко возрастать, так как увеличение тока намагничивания при дальнейшем снижении частоты оказывается сильнее влияния от снижения нагрузки. Потребление двигателем реактивной мощности при снижении частоты возрастает примерно так же, как от повышения напряжения.

Допустимые температуры подшипников.Вкладыши подшипников скольжения не должны нагреваться выше 80 °С, а разность между температурами вкладыша и окружающего воздуха не должна быть выше 45 °С. Температура масла в подшипнике без маслоохладителя ниже температуры вкладыша на 5—10 °С, поэтому масло в таких подшипниках не должно нагреваться выше 70—75 °С. Для подшипников с принудительной смазкой температура масла на сливе из подшипников не должна быть выше 65 °С. Температура подводимого масла при длительной работе не должна быть выше 40—45 и ниже 25 °С.

Читать еще:  Что можно сделать с драйвером двигателей

Согласно ГОСТ 183-80 для подшипников качения предельно допустимая температура равна 100°С. Но в большинстве сл)*чаев фактическая температура подшипников качения значительно ниже этого значения. Если температура подшипника заметно повысилась в сравнении с длительно наблюдавшейся температурой, а температуры двигателя и наружного воздуха остались на прежнем уровне, то это указывает на появление какого-то дефекта в подшипнике. Двигатель при первой возможности следует остановить для ревизии.

Вибрация двигателя, измеренная на каждом подшипнике, не должна превышать следующих значений:

Синхронная частота вращения,

об/мин. 3000 1500 1000 75 и ниже

Допустимая амплитуда вибрации,

мкм. 50 100 130 160

Повышенная вибрация ослабляет крепления обмоток и увеличивает износ подшипников и других частей. При сильной вибрации могут произойти задевание ротора за статор, поломка вала ротора, нарушение контакта в обмотках.

Холодный двигатель с короткозамкнутым ротором допускается пускать 2—3 раза подряд, а горячий — не более 1 раза. При большем числе пусков подряд обмотки двигателя недопустимо перегреваются от пускового тока, что резко сокращает их срок службы.

Дата добавления: 2016-06-02 ; просмотров: 1090 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Правильная мощность двигателя и преобразователя частоты

Производители электродвигателей и частотных преобразователей разработали различные методы для быстрого выбора мощности двигателей и частотных преобразователей под конкретную нагрузку оборудования. Такая же базовая процедура используется большинством инженерных приложений. Однако для инженеров важно четко понимать процедуру выбора.

Одна из лучших процедур использует простую нумерацию, основанную на кривых ограничения нагрузки, чтобы сделать основной выбор мощности двигателя. Эта процедура описана ниже. Затем проверяются другие факторы, чтобы обеспечить оптимальную комбинацию двигателя и преобразователя.

Рекомендуются 4 следующих принципа подбора:

Принцип выбора 1:

Во-первых, базовая скорость должно выбираться таким образом, чтобы двигатель работал как можно с большей скоростью, немного превышающей базовую скорость 50 Гц.

Это желательно, потому что:

  • Тепловая мощность двигателя улучшается при f ≥ 50 Гц из-за более эффективного охлаждения на более высоких скоростях.
  • Потери коммутации преобразователя минимальны, когда он работает в диапазоне ослабления поля выше 50 Гц.
  • При постоянной нагрузке на крутящий момент достигается больший диапазон скорости, когда двигатель работает хорошо в диапазоне ослабления поля с максимальной скоростью. Это означает, что наиболее эффективное использование крутящего момента и скорости привода переменной скорости .

Типичные кривые крутящего момента и мощности при постоянном приводе мощности / крутящего момента

Это может означать экономию средств в виде меньшего двигателя и преобразователя .

Хотя многие производители утверждают, что их преобразователи могут производить выходные частоты до 400 Гц, эти высокие частоты практически не используются, за исключением особых (и необычных) исполнений. Конструкция стандартных каркасных двигателей и снижение пикового крутящего момента в зоне ослабления поля ограничивают их использование на частотах выше 100 Гц.

Максимальная скорость, с которой может запускаться стандартный двигатель с короткозамкнутым ротором , должна всегда проверяться у изготовителя, особенно для более крупных 2-полюсных (3000 об / мин) двигателей более 200 кВт. Шум вентилятора, создаваемый двигателем, также значительно увеличивается по мере увеличения скорости двигателя.

Сравнение крутящего момента, создаваемого 4-полюсным и 6-полюсным двигателями , показано на рисунке 1. Это иллюстрирует более высокую крутящую способность 6-полюсной машины.

Сравнение предельных кривых тепловой мощности для двух двигателей с короткозамкнутым ротором мощностью 90 кВт

a) 90 кВт 4-полюсный двигатель (1475 об / мин)

b) 90 кВт 6-полюсный двигатель (985 об / мин)

Принцип выбора 2:

Выбор двигателя большей мощности просто для того, чтобы быть «безопасным», обычно не рекомендуется, потому что это означает, что также должен быть выбран преобразователь с увеличенным частотным диапазоном. Преобразователи частоты, в частности, ШИМ-тип, рассчитаны на максимальное значение пикового тока, которое представляет собой сумму основных и гармонических токов в двигателе .

Чем больше двигатель, тем больше пиковые токи.

Чтобы избежать этого пикового тока, превышающего расчетный предел, конвертер никогда не должен использоваться с размером двигателя, большим, чем для указанного . Даже когда большой двигатель слегка загружен, его пики гармонических токов высоки.

Принцип выбора 3:

После выбора двигателя достаточно легко выбрать правильный размер преобразователя из каталога производителя . Обычно они рассчитаны на ток (не кВт) на основе определенного напряжения. Это следует использовать только в качестве руководства, поскольку преобразователи всегда должны выбираться на основе максимального непрерывного тока двигателя.

Хотя большинство каталогов основаны на стандартных номинальных значениях мощности двигателя IEC (кВт), двигатели разных производителей имеют несколько разные номинальные токи.

Преобразователи частоты Danfoss

Принцип выбора 4:

Хотя кажется очевидным, двигатель и преобразователь должны быть указаны для напряжения питания и частоты, к которой должен подключаться привод переменной скорости.

В большинстве стран, использующих стандарты IEC, стандартное напряжение питания составляет 380 вольт ± 6%, 50 Гц . В Австралии это 415 В ± 6%, 50 Гц . В некоторых приложениях, где мощность привода очень велик, часто экономично использовать более высокие напряжения для снижения стоимости кабелей. Другие обычно используемые напряжения 500 В и 660 В .

В последние годы преобразователи переменного тока изготавливаются для использования на напряжении 3,3 кВ и 6,6 кВ . Преобразователи частоты рассчитаны на то же выходное напряжение, что и на входе, поэтому оба двигателя и преобразователя должны быть указаны для одного и того же базового напряжения.

Хотя выходная частота преобразователя является переменной, входная частота (50 Гц или 60 Гц) должна быть четко определена, поскольку это может повлиять на конструкцию индуктивных компонентов .

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector