Что означает параметр нагрузка на двигатель
Устройство автомобилей
Характеристики двигателей
Оценить мощностные и экономические возможности двигателя внутреннего сгорания при работе его в различных эксплуатационных условиях можно по техническим и технологическим характеристикам, получаемым в результате различных испытаний – стендовых, дорожных, полигонных, эксплуатационных и т. п.
Характеристикой двигателя называется зависимость основных показателей его работы (мощности, вращающего момента на выходном валу, расхода топлива) от одного из параметров режима работы (частоты вращения коленчатого вала, внешней нагрузки и т. п.). Характеристики двигателя определяют его эксплуатационные качества, уровень технического совершенства, правильность регулировок, а также его назначение.
Основные характеристики автомобильных двигателей определяются ГОСТ 14846-81 «Двигатели автомобильные. Методы стендовых испытаний»:
скоростная характеристика – зависимость основных эффективных показателей работы двигателя от частоты вращения его коленчатого вала;
коэффициент приспособляемости – способность двигателя преодолевать кратковременные перегрузки;
нагрузочные характеристики – зависимости удельного и часового расхода топлива от мощности, развиваемой двигателем;
характеристика холостого хода – зависимость часового расхода топлива от частоты вращения коленчатого вала при работе двигателя без нагрузки;
регулировочные характеристики – зависимость мощностных и экономических показателей работы от состава рабочей смеси, воспламеняемой в цилиндрах двигателя, угла опережения зажигания или впрыска, температуры двигателя и других регулируемых факторов.
Нагрузочная характеристика
Нагрузочной характеристикой называется изменение часового и удельного расхода топлива в зависимости от величины нагрузки. Работа на режимах нагрузочной характеристики наиболее характерна для двигателей, которые используются для привода электрических агрегатов, насосов, компрессоров, тракторов. В частности, нагрузочная характеристика имитирует работу двигателя на автомобиле, при его движении с постоянной скоростью на одной из передач в условиях переменного сопротивления со стороны дороги.
Цель получения нагрузочной характеристики – определение топливной экономичности двигателя.
Условия получения нагрузочной характеристики:
- независимая переменная величина – нагрузка на двигатель (так как с увеличением нагрузки для ее преодоления двигатель должен увеличивать мощность Nе , среднее эффективное давление ре и крутящий момент Мк , то нагрузку выражают в процентах относительно одного из этих параметров;
- постоянная величина – частота вращения коленчатого вала;
- зависимые переменные величины – удельный расход топлива gе и часовой расход топлива Gt .
Скоростная характеристика
Скоростная характеристика двигателя представляет собой зависимость основных эффективных показателей его работы (эффективная мощность, вращающий момент на выходном валу, удельный и часовой расход топлива) от частоты вращения коленчатого вала при постоянной подаче топлива в цилиндры в установившемся тепловом режиме.
Различают внешнюю и частичные скоростные характеристики.
Скоростная характеристика, полученная при полной подаче топлива (полностью открытой дроссельной заслонке или соответствующем положении рейки топливного насоса дизеля) и при углах опережения зажигания или начала впрыскивания топлива по техническим условиям на двигатель, называется внешней скоростной характеристикой двигателя .
Внешняя скоростная характеристика позволяет определить максимальные мощностные показатели двигателя и оценить его экономичность при полных нагрузках.
Характеристики, соответствующие постоянным промежуточным положениям дроссельной заслонки или рейки топливного насоса, называются частичными скоростными характеристиками двигателя . Иными словами, любая характеристика, полученная при неполном открытии регулирующего органа двигателя, называется частичной скоростной характеристикой.
Скоростную характеристику реального двигателя строят по результатам стендовых испытаний.
Вал работающего двигателя нагружают с помощью тормоза, обеспечивая фиксирование частоты вращения от минимально устойчивой до максимально допустимой. При этом на каждой частоте замеряют тормозной момент Мт в (Н×м) и часовой расход топлива в кг/ч.
По результатам испытаний строят кривые зависимости эффективного вращающего момента и часового расхода топлива от частоты вращения вала двигателя.
Затем, используя формулы:
находят эффективную мощность и удельный расход топлива, после чего отображают их графические зависимости.
В зависимости от укомплектованности двигателя вспомогательными устройствами и оборудованием определяют мощность нетто (полная комплектация) или мощность брутто (неполная комплектация).
Различают следующие характерные частоты вращения коленчатого вала:
- минимальная частота вращения, при которой возможна устойчивая работа двигателя при полной подаче топлива;
- частота вращения, соответствующая наибольшему вращающему моменту;
- частота вращения, соответствующая наибольшей мощности двигателя;
- наибольшая возможная частота вращения коленчатого вала, устанавливаемая ограничителем частоты вращения.
Характеристика холостого хода является частным случаем скоростной характеристики двигателя.
Внешнюю скоростную характеристику вновь проектируемого двигателя можно построить по эмпирическим зависимостям, где максимальная мощность и соответствующие ей удельный расход топлива и частота вращения берутся из данных теплового расчета двигателя при его конструировании.
Приемистость и приспособляемость двигателя
Способность двигателя с ростом частоты вращения коленчатого вала наращивать мощность называется его приемистостью .
Приемистость двигателя непосредственно влияет на приемистость автомобиля, т. е. его способности ускоряться и разгоняться. Скоростная характеристика во многом отражает степень приемистости двигателя: чем круче кривая Nе , тем приемистость двигателя больше.
Если сравнить скоростные характеристики карбюраторного двигателя и дизеля, то можно заметить, что кривая мощности Nе у дизеля круче, т. е. дизель обладает большей приемистостью.
Способность двигателя с ростом внешней нагрузки сохранять частоту вращения коленчатого вала называется его приспособляемостью (самоприспособляемостью или эластичностью).
Например, затяжной подъем один из автомобилей может преодолеть без переключения КПП на пониженную передачу, а другой при таких же условиях заглохнет. Следовательно, в первом случае приспособляемость двигателя автомобиля выше, чем во втором.
Приспособляемость автомобиля к изменению внешней нагрузки оценивается коэффициентом приспособляемости (коэффициентом самоприспособляемости). Чем больше значение этого коэффициента, тем лучше приспособляемость автомобиля к увеличению внешней нагрузки.
Устойчивость режима автомобильного двигателя к увеличению внешней нагрузки оценивают по запасу крутящего момента, который определяется отношением максимального крутящего момента Мкmax к крутящему моменту Мкном , развиваемому двигателем на номинальном режиме; это отношение и называют коэффициентом приспособляемости k .
Коэффициент приспособляемости k , характеризующий приспособляемость двигателя к изменению внешней нагрузки, может быть определен по формуле:
В бензиновых двигателях средний коэффициент приспособляемости k = 1,25. 1,35, в дизельных k = 1,05. 1,2.
Поскольку коэффициент приспособляемости характеризует способность двигателя преодолевать кратковременные перегрузки без переключения передач, можно сделать вывод, что дизельные двигатели переносят изменение внешней нагрузки хуже, чем карбюраторные. Чтобы преодолеть этот недостаток дизелей увеличивают размеры цилиндров, что приводит к увеличению крутящего момента, а также применяют всережимные регуляторы частоты вращения коленчатого вала.
Как повысить эффективность электродвигателя
Большинство насосов приводятся в действие с помощью асинхронных электродвигателей, это означает, что двигатели вносят вклад в общую эффективность насосной системы.
Данная статья посвящена исследованию ключевых аспектов эффективности электродвигателя, которые находятся под контролем пользователя. 2/3 всей вырабатываемой электроэнергии, потребляются электродвигателями, которые используются в различном оборудовании на промышленных площадках всего мира.
Электродвигатели развиваются на протяжении последних 150 лет. Не смотря на то, что существует большой выбор из различных конструкций двигателей (например синхронные, асинхронные или постоянного тока), наиболее используемым в промышленности на сегодняшний день является асинхронный электродвигатель переменного тока, т.к. является более надежным. Также асинхронный электродвигатель предпочтительнее при использовании частотного преобразователя. Достаточно высокая эффективность в сочетании с простотой изготовления, высокой надежностью и низкой ценой делает его самым широко-применяемым типом двигателя по всему миру.
Рисунок 1: Асинхронный электродвигатель с короткозамкнутым ротором
На рисунке 1 показана обычная компоновка асинхронного электродвигателя с тремя обмотками статора, которые расположены вокруг сердечника. Обмотка ротора состоит из медных или алюминиевых стержней, торцы которых накоротко замкнуты кольцами. Кольца изолированы от ротора. В подшипниковом узле, как правило, используются шарикоподшипники с консистентной смазкой, за исключением очень больших двигателей. Смазка масляным туманом может значительно увеличить срок службы подшипников. Во всех асинхронных электродвигателях используется трехфазный ток, за исключением самых маленьких промышленных процессов (ниже 2 л.с.). Для запуска фазных двигателей необходимы другие средства, такие как щетки или конденсаторный пуск (использование конденсатора во время пуска).
Проблема эффективности двигателя
При использовании электродвигателя в качестве привода насоса потери энергии и падение давления в результате неэффективности насоса обычно гораздо больше, чем потери энергии связанные с неэффективностью электродвигателя, но они не являются незначительными. Оптимизация эффективности электродвигателя насоса может обеспечить реальную экономию стоимости рабочего цикла на протяжении всего срока службы насоса/электродвигателя. Ключевыми факторами, которые влияют на эффективность асинхронного двигателя являются:
- относительная нагрузка двигателя (негабаритные двигатели находящиеся под нагрузкой)
- скорость вращения (число полюсов)
- размер двигателя (номинальная мощность)
- класс двигателя: обычный КПД в сравнении с энергоэффективностью в с равнении с высоким КПД
Эффективность электродвигателя при частичной загрузке
Как показано на рисунке 2, эффективность асинхронного электродвигателя изменяется вместе с
относительной нагрузкой на электродвигатель по сравнению с номинальной характеристикой. Вплоть до нагрузки в 50% эффективность большинства электродвигателей остается линейной и для некоторых электродвигателей достигает пика у отметки 75%. Электродвигатели могут работать при нагрузке меньше 50% только в течение короткого промежутка времени и не могут эксплуатироваться при нагрузках меньше 20% от номинальных. Таким образом, когда отрегулированные рабочие колеса или насосы возвращаются к своим кривым «напор-подача», необходимо оценить воздействие относительной нагрузки на электродвигатель.
Рисунок 2: Эффективность электродвигателя для 100-сильных моторов — Обычные кривые характеристик при нормальном диапазоне нагрузок электродвигателя
Скорость вращения
На рисунке 2 также показано влияние скорости вращения на максимально-достижимую эффективность. 4-х полюсный электродвигатель при номинальных 1800 об/мин выходит на самый высокий КДП, а 2-х полюсный при номинальных 3600 об/мин дает низкую эффективность. Таким образом, хотя насосы с номинальной частотой вращения 3600 об/мин могут быть более эффективными (и иметь низкую закупочную стоимость), чем насосы со скоростью вращения 1800 об/мин, электродвигатели последних могут быть более эффективными, плюс эти насосы, как правило, имеют более низкий NPSHR и энергию всасывания, не говоря уже о более длительном сроке службы. Также следует отметить, что номинальная мощность электродвигателя влияет на его эффективность, большие электродвигатели имеют большую эффективность, чем малые.
Скорость вращения асинхронного электродвигателя
Синхронная скорость вращения асинхронного электродвигателя рассчитывается по следующей формуле:
n = 120*f/p
где:
n = скорость вращения в об/мин
f = частота питающей сети (Гц)
p = количество полюсов (min = 2)
Для регулирования частоты вращения электродвигателя без использования внешних механических устройств необходимо регулировать напряжение и частоту подаваемого тока. Некоторые электродвигатели могут быть изготовлены с несколькими обмотками (количество полюсов) для достижения двух или более различных скоростей вращения.
Асинхронные электродвигатели вращаются со скоростью, которая меньше скорости вращения магнитного поля (на 1-3% при полной нагрузке). Разница между фактической и синхронной частотой вращения называется скольжением. Для новых более энергоэффективных электродвигателей скольжение имеет тенденцию уменьшаться в отличие от старых электродвигателей с обычным КПД. Это означает, что при заданной нагрузке энергоэффективные электродвигатели работают немного быстрее.
Рисунок 3. Эффективность при полной и частичной загрузке двигателя с низким и высоким КПД
Электродвигатели с высоким КПД
На рисунке 3 изображен пример возможного повышения эффективности, когда старый электродвигатель с обычной эффективностью заменяется новым, имеющим более высокий КПД. Как упоминалось ранее, электродвигатели с высоким КПД работают с меньшим скольжением, что дает некоторое увеличение скорости вращения, а следовательно напор насоса и производительность становятся несколько больше.
Однако, использование электродвигателей с высоким КПД в некоторых (с изменением подачи) процессах будет не оправданно, из-за большей скорости вращения (и напора насоса), до тех пор пока существующие электродвигатели по-прежнему слабо загружены (работающие с низким КПД). Т.к. входная мощность на валу насоса пропорциональна скорости в кубе, простая замена старого электродвигателя новым с высоким КПД не обязательно приведет к снижению потребления энергии.
С другой стороны, если немного большая подача и напор для насоса — это хорошо, замена старого
электродвигателя с обычным КПД на новый с высоким КПД может быть оправдана.
Коэффициент мощности электродвигателя
Другая проблема, которая входит в игру с характеристиками асинхронного электродвигателя (которая имеет косвенное влияние на энергопотребление) называется «Коэффициент Мощности«. Некоторые
коммунальные предприятия обязывают клиентов платить дополнительные сборы за низкие значения
коэффициентов мощности. Потери в сети происходят за счет того, что при меньшем коэффициенте
мощности требуется большее количество тока, что приводит к серьезным потерям энергии. Как и КПД,
коэффициент мощности электродвигателя также снижается с уменьшением нагрузки на него практически по линейному закону приблизительно до 50% нагрузки.
Определение коэффициента мощности:
Фазовый сдвиг (задержка) синусоидальной волны тока от синусоиды напряжения, который выбарабывает меньшее количество полезной мощности.
Сдвиг, вызванный необходимым током намагничивания двигателя
PF = Pi/KVA
Где:
KVA = VxIx(3) 0.5 /1,000
Нижняя формула показывает, как коэффициент мощности влияет на входную мощность трехфазного
электродвигателя (кВт). Обратите внимание, что чем ниже коэффициент мощности (больший сдвиг фазы ток-напряжение VA), тем меньше входная мощность при данном входном токе и напряжении.
Где:
Pi = VxIxPF(3) 0.5 /1,000
Pi= трехфазный вход кВт
V= среднеквадратичное напряжение (среднее от 3 фаз)
I= среднеквадратичное значение силы тока в амперах (берется от 3 фаз)
PF= коэффициент мощности в виде дроби
Хотя коэффициент мощности не влияет напрямую на КПД электродвигателя, он оказывает влияние на потери в сети, как это упоминалось выше. Однако, есть способы увеличения PF (коэффициента мощности), а именно:
- покупка электродвигателей с изначально высоким PF
- не покупайте слишком большие электродвигатели (коэффициент мощности падает вместе с уменьшением
- нагрузки на электродвигатель)
- установка компенсирующих конденсаторов параллельно с обмотками электродвигателя
- увеличить полную загрузку коэффициента мощности до 95% (Max)
- преобразование в привод с частотным регулированием
Пусковые конденсаторы электродвигателей являются одним из наиболее поппулярных способов увеличения коэффициента мощности и имеют следующий список преимуществ:
- увеличение PF
- меньшение реактивного тока от электрооборудования через кабели и пускатели электродвигателейменьшее тепловыделение и потери мощности кВт
- По мере уменьшения нагрузки на электродвигатель растет возможность экономии, а PF
- падает ниже 60%-70%. (возможная экономия 10%)
- Уменьшение сборов за коэффициент мощности
- Увеличение общей производительности системы
- Интеллектуальная система управления электродвигателем
- Частотно-регулируемый электропривод
Более высокое напряжение
Другим способом повышения КПД электродвигателя является повышение рабочего напряжения. Чем выше напряжение, тем ниже ток и, тем самым будут ниже потери в сети. Однако, высокое напряжение приведет к увеличению цены частотно-регулируемого привода и сделает работу более опасной.
Выводы
Таким образом, когда вы пытаетесь сократить энергопотребление насосных систем не забывайте о
КДП электродвигателя и факторах, перечисленных выше, которые на него влияют.
Как конструкция двигателя может выдерживать огромные мощности?
Чтобы понять, почему для конструкции двигателя не является губительной увеличенная в разумных пределах при помощи турбонагнетателя мощность, необходимо рассмотреть статические нагрузки в двигателе во время его работы. К конструкции двигателя в разные моменты его работы прикладываются два вида статических нагрузок: инерционные и мощностные. Инерционные нагрузки могут быть растягивающими (произведены растягиванием) или сжимающими (произведены сжатием). Мошностная нагрузка может быть только сжимающей. Механизмы воздействия этих нагрузок должны стать понятны читателю как по отдельности, так и в совокупности. Это необходимо для ясного представления, почему турбонагнетатель не убивает кривошипно-шатунный механизм двигателя.
Инерционная нагрузка
Инерционная нагрузка возникает из-за сопротивления предмета ускоренному движению. Чтобы исследовать инерционные нагрузки, удобно разделить цилиндр на верхнюю и нижнюю части. Вообразите две половины, отделенные мнимой линией, называемой серединой хода поршня.
Рис. Зависимость нагрузок на узлы двигателя меняет свой характер в трёх характерных взаимных положениях поршня и коленчатого вала.
Вектор ускорения поршня всегда направлен к середине его хода даже при движении вверх или вниз от этой середины. Другими словами, когда поршень выше середины своего хода, он будет всегда ускоряться вниз. Когда он ниже середины хода (даже в мертвой точке), он будет ускоряться вверх. Самые большие ускорения достигается в верхней мертвой точке и нижней мертвой точке, когда поршень фактически останавливается. Когда ускорение самое большое, нагрузки будут самые высокие. Когда поршень проходит через середину своего хода ускорение нулевое, а скорость максимальна.
Величина нагрузок, возникающих при движении поршня, пропорциональна частоте вращения двигателя, возведенной в квадрат. Например, если число оборотов двигателя в минуту увеличено втрое, инерционная нагрузка будет в девять раз большей. Поршень, который двигается (ускоряется) к верхней мертвой точке и затем обратно к середине хода, прикладывает растягивающую инерционную нагрузку к узлу поршень/шатун. Напротив, когда поршень двигается к нижней мертвой точке и затем обратно к середине хода, инерционная нагрузка будет сжимающей. Таким образом, во время нахождения поршня выше середины хода инерционная нагрузка, будет растягивающей, а ниже середины хода — сжимающей. Самое большое растягивающее усилие, приюженное к шатуну — в верхней мертвой точке на ходе выпуска (потому что в верхней мертвой точке в конце такта сжатия ТВС уже горит и создает давление, противодействующее инерционной нагрузке). Самая большая сжимающая нагрузка — в нижней мертвой точке после впуска или рабочего такта.
Эти инерционные нагрузки огромны. В двигателе большого объема, работающем на 7000 оборотов в минуту, в шатуне могут развиваться инерционные нагрузки величиной более, чем 1,8 тонны. (Для наглядности представьте себе микроавтобус, стоящий на вашем шатунном подшипнике.)
Рис. Инерционные нагрузки, прикладываемые к шатуну, приближены к синусоидальной зависимости относительно угла поворота коленчатого вала.
Мощностная нагрузка
Мощностная нагрузка возникает от давления сгорающей ТВС, приложенного к поршню. Это сжимающая нагрузка, приложенная к шатуну вследствие того, что горящие газы вынуждают поршень двигаться вниз.
Давление, созданное расширяющимися горячими газами, прикладывает к поршню силу, равную площади сечения цилиндра, помноженной на давление в камере сгорания. Например, шатун в двигателе с площадью сечения цилиндра 64,5 квадратных сантиметра (при диаметре 90 мм) при давлении в камере сгорания более 50 бар, будет испытывать сжимающую мощностную нагрузку в 3,6 тонны.
Особая зависимость инерционных и мощностных нагрузок наиболее интересна в верхней половине рабочего такта. Здесь мы имеем следующую картину: две нагрузки, действующие на шатун, нагружают его в различных направлениях. Помните, что инерционная нагрузка является растягивающей выше середины хода, в то время как мощностная нагрузка в любом случае является сжимающей. Мощностная нагрузка достигает максимума при максимуме крутящего момента, и постепенно снижается при дальнейшем увеличении оборотов двигателя, но вообще всегда больше чем инерционная нагрузка. Разность между этими двумя нагрузками и есть реальная нагрузка на шатун.
Итак, инерционные нагрузки частично компенсируются мощностной нагрузкой. Из вышесказанного, очевидно, что в конце такта выпуска, когда шатун/поршень достигает верхней мертвой точки и не подвергается сопротивлению сжимающихся газов (потому что все клапана открыты), достигается самое высокое растягивающее усилие. Эта нагрузка наиболее разрушительна из всех, потому что растягивающие усилия вызывают усталостное разрушение, в то время как сжимающие усилия к этому не приводят. Поэтому, когда конструктор анализирует напряжения в шатуне и шатунных бол тах, его в наибольшей степени интересуют инерционные нагрузки в верхней и нижней мертвых точках.
Рис. Сгорающая ТВС создает сжимающие нагрузки в шатуне.
Рис. Объединенный график мощностной и инерционной нагрузок. Заметьте, что мощностная и инерционная нагрузка вычитаются друг из друга.
Мысль об удвоении момента двигателя (удвоении мощности при тех же оборотах двигателя) приводит к другой мысли — об удвоении мощностной нагрузки. К счастью это не так. Показать, как мощность можно удвоить без удвоения давления в камере сгорания, проще всего графически. Любые существенные изменения расчетной нагрузки будут основаны на пиковом давлении в камере сгорания. На рисунке видно, что при удвоении количества смеси в камере сгорания, пиковое давление возрастает только приблизительно на 20 %. Имеются две причины для этой непропорциональности.
Во-первьтх, мощность — функция среднего давления по всему рабочему ходу поршня, а не только пикового давления. Среднее давление может быть значи тельно увеличено за счет более высокого давления в середине или в конце хода, в то время как максимум давления существенно не возрастает.
Во-вторых, максимальное давление вообще достигается после сгорания 18-20 % смеси. Если количество смеси удвоено, те же 18-20 % этого количества сгорят при достижении максимального давления. Так как полное давления в камере сгорания состоит из давления сжатия и давления сгоревших газов, невозможно удвоить полное давление, удваивая только одну из его составных частей. (Не иначе, законы физики благосклонны к шатунам и шатунным подшипникам.)
Рис. Давление в цилиндре как функция угла поворота коленчатого вала при примерно двух атмосферах давления. Заметьте, что у двигателя с турбонаддувом максимальное давление достигается приблизительно при 20″ после ВМТ, когда сгорает около 20% смеси. Даже при высоких давлениях наддува небольшое количество сгоревшей смеси не будет давать результат в виде большого изменениях максимального давления. Когда процесс горения приблизится к завершению, большая плотность смеси может поднимать давление в три-четыре раза при углах поворота коленчатого вала около 90″, поэтому момент на валу при этом может быть вдвое больше.
Тщательное изучение рисунка показывает, что при угле поворота коленчатого вала, приближающегося к 90″, давление в камере сгорания, при работе с наддувом, в три — четыре раза больше. Оно, однако, заметно меньше чем максимальное давление. Поэтому оно не создает разрушающей нагрузки. Часть рабочего хода в районе 90″ — это тот участок, где возникают реальные увеличения мощности двигателя с турбонаддувом. Любой владеющий физикой товарищ, посмотрев на диаграмму, скажет Вам, что область под соответствующими кривыми представляет собой мощность. Таким образом, разность в площади этих двух областей представляет собой увеличение мощности от применения турбонагнетателя. Теперь очевидно, что мы можем удваивать мощность, не удваивая нагрузку на поршень и шатун!
Итак: предшествующее обсуждение показывает, что увеличенное давление в камере сгорания при использовании турбонадцува и увеличившаяся при этом мощностная нагрузка будут иметь довольно умеренное влияние на конструкцию двигателя.
Умеренное увеличение мощностной нагрузки вообще не будет серьезно влиять на конструкцию двигателя.
Нагрузочные характеристики двигателей внутреннего сгорания
По нагрузочной характеристике работают вспомогательные двигатели, предназначенные для привода генераторов, компрессоров, насосов, а также главные двигатели на судах с электро-движением или главные двигатели, работающие на винт регулируемого шага. Определяющим условием нагрузочной характеристики является постоянство частоты вращения (n = const). Постоянство частоты вращения поддерживается автоматическим регулятором в пределах ±Зч÷5% путем изменения активного хода плунжеров топливных насосов высокого давления и соответствующего изменения цикловых подач топлива при изменении нагрузки двигателя.
В качестве показателя нагрузки двигателя может быть принята эффективная мощность Ne, момент на фланце отбора мощности Me, среднее эффективное давление Ре. Эти параметры в равной степени определяют нагрузку. Чаще всего в качестве параметра нагрузки принимается среднее эффективное давление.
Изменение энерго-экономических показателей
Характерной особенностью нагрузочной характеристики является постоянство мощности механических потерь двигателя NM = const при n = const независимо от нагрузки (Рис. 1). Это положение установлено многочисленными исследованиями и объясняется малой зависимостью сил зрения в трущихся деталях дизеля от нагрузки при постоянной частоте вращения.
Зависимость эффективной мощности от Ре определяется равенством:
Ne = Ре (Vs n i / 0,06 m) кВт
Для конкретного дизеля можно написать:
Ne = к п Ре (№1)
где к — коэффициент пропорциональности.
Рис. 1 Изменение показателей работы дизеля по нагрузочной характеристике
Как следует из этой формулы, при n = const характеристика Ne (Pe) является прямой линией, выходящей из начала координат. Зависимость индикаторной мощности Индикаторная и эффективная мощность двигателя от Ре пройдет эквидистантно прямой Ne(Pe), поскольку Ni = Ne + Nм.
Механический КПД дизеля определяется равенством:
ηм = 1 — Nм / Ni
На холостом ходу (при Ре = 0) механический КПД равен 0, т.к. вся индикаторная мощность при этом идет на преодоление механических потерь двигателя: Ni = Nм. При возрастании нагрузки ηм возрастает, достигая максимума при 100% Ре.
При изменении Ре от 100% в сторону уменьшения нагрузки индикаторный КПД дизеля ηi сначала возрастает, достигая максимума у двигателей с наддувом при Ре = (20+30)% от Ре мax , а затем начинает уменьшаться. Такое изменение ηi обуславливается изменением 2-х факторов. С уменьшением нагрузки уменьшается цикловая подача топлива в цилиндр, возрастает коэффициент избытка воздуха на сгорание.
Увеличение а приводит к росту скорости и полноты сгорания топлива, сгорание смещается в сторону верхней мертвой точки, что способствует снижению тепловых потерь двигателя ( в первую очередь потерь с уходящими газами). Однако по мере снижения цикловой подачи топлива избыток воздуха становится чрезмерным (α = 4÷5 и более), уменьшается температура цикла и температура стенок.
Из-за малых цикловых подач ухудшается распыливание топлива, смесеобразование и сгорание. При этом возрастает период задержки самовоспламенения τi,. Процесс сгорания переходит на линию расширения (рис. №2), растет доля тепла с уходящими газами (по сравнению с полезно используемым теплом). Индикаторный КПД уменьшается, достигая на режиме холостого хода величин, близких к значениям ηi на полной нагрузке. Более раннее и более интенсивное снижение ηi, наблюдается у двигателей с регулированием ТНВД по началу подачи, что связанно с худшим распыливанием топлива и уменьшением угла опережения подачи топлива (вплоть до смещения угла φнпн за ВМТ) при снижении нагрузки двигателя.
Рис. 2 Вид развернутой индикаторной диаграммы при полной нагрузке (Ре=100%) и на холостом ходу (Ре=0)
У двигателей без наддува или с механическим нагнетателем расход воздуха на двигатель практически не зависит от нагрузки, что способствует более интенсивному возрастанию α при уменьшении Ре, чем в двигателях с газотурбинным наддувом. Следовательно, у этих двигателей максимум гр достигается при более высоких Ре, а индикаторный КПД на холостом ходу у двигателей без наддува при прочих равных условиях меньше, чем ηi у двигателей с ГТН.
Эффективный КПД двигателя определяется совместным влиянием индикаторного и механического КПД: ηе = ηi ηм. При возрастании нагрузки от режима холостого хода ηе растет подобно росту механического КПД, достигая максимума вблизи номинальной нагрузки. Последующее снижение ηе является результатом ухудшения индикаторного процесса из-за снижения α и уменьшения индикаторного КПД. Обычно максимальное значение эффективного КПД достигается при Ре ≈ 0,85 Ре ном.
Удельные расходы топлива связаны с КПД зависимостями:
Как видно, удельные расходы топлива Удельные расходы топлива изменяются по зависимостям, обратно пропорциональным изменению соответствующих КПД.
Практически эффективные показатели работы двигателя могут быть определены в условиях испытательного стенда путем измерения эффективной мощности Ne (но показаниям нагрузочного устройства) и часового расхода топлива на установившихся режимах работы. Индикаторные показатели могут быть найдены по результатам индицирования или осциллографирования двигателя (определяется среднее индикаторное давление Определение среднего индикаторного давления , индикаторная мощность и т.д.). Мощность механических потерь и механический КПД находятся из соотношения эффективных и индикаторных показателей.
В том случае, если индикаторные показатели работы двигателя прямо определить невозможно (к примеру, в судовых условиях, где дизель — генераторы обычно не имеют индикаторного привода Проверка регулировки индикаторного привода для снятия индикаторных диаграмм), индикаторная мощность и прочие индикаторные показатели определяются ориентировочно через механический КПД:
Механический КПД находится по соотношению расходов топлива на двигатель на холостом ходу и на режиме номинальной нагрузки. При этом делается допущение, что индикаторный КПД дизеля на холостом ходу такой же, как и на режиме номинальной нагрузки: ηix.x ≈ ηiн. В этом случае можно написать:
На холостом ходу мощность механических потерь равна индикаторной мощности: Nм= Ni, а часовой расход топлива равен Gx.x = Nм gix.x. Соответственно на режиме номинальной нагрузки часовой расход топлива составит: Gн = Ni giн. Подставив полученные значения величин в приведенную выше зависимость для ηм, получим для режима номинальной нагрузки:
Погрешность определения индикаторных показателей с помощью этой зависимости оценивается погрешностью допущения равенства индикаторного КПД на холостом ходу и на номинальной нагрузке.
По нагрузочной характеристики ge = f(Ре) в условиях стенда может быть в первом приближении установлена номинальная мощность двигателя. Для этого по результатам стендовых испытаний при расчетной частоте вращения из точки О (рис. №3) проводится касательная к кривой ge = f(Ре). Вправо от точки касания расход топлива увеличивается более интенсивно, чем возрастает среднее эффективное давление, интенсивно растет температура цилиндро-поршневой группы. Как правило, точка Е определяет предельно допустимые значения среднего эффективного давления, мощности, цикловой подачи топлива. Дальнейшее повышение цикловой подачи должно быть ограничено упором. Номинальное значение мощности целесообразно установить левее точки Е, где Ре меньше на 10%. Окончательно режим номинальной мощности и численное значение номинальной нагрузки устанавливается в результате тщательного анализа всех энерго-экономических и других показателей работы дизеля (главным образом показателей тепловой напряженности Изменение тепловой напряженности ).
Рис. 3 Определение номинальной мощности дизеля