Что называют рабочим телом теплового двигателя
Рабочее тело тепловых машин
2.1.1. Газ как рабочее тело
Выше было показано, что для непрерывного взаимного преобразования теплоты и работы необходимо иметь, кроме источника теплоты и теплоприемника, вспомогательное тело, которое воспринимает энергию в одной форме и в результате кругового процесса преобразует ее некоторую часть в другую форму. Это вспомогательное тело называют р а б о ч и мт е л о м.
В качестве рабочих тел тепловых машин необходимо использовать вещества, обладающие свойством сжимаемости. Это требование вытекает из того, что цикл тепловых машин обязательно включает в себя процессы, связанные с изменением объема рабочего тела, например, расширение продуктов сгорания в ДВС, сжатие фреона в компрессоре холодильной машины и т.п. В табл.3 и табл. 4 Приложения приведены свойства некоторых газов, используемых в качестве рабочих тел.
Рабочим телом современных теплоэнергетических установок являются однородный газ или газовые смеси. В ряде случаев протекание процессов связано с рабочим телом многофазового состава. Так, например, в испарителе холодильной машины хладагент находится в парожидкостном состоянии. Рабочее тело часто включает вещества, способные вступать друг с другом в химические реакции. В общем случае фазовые переходы и химические реакции сопровождаются тепловым и механическим взаимодействием с внешней средой, поэтому для их анализа используются общие методы термодинамики. Расчеты циклов энергетических установок существенно упрощаются, если реальный газ рассматривать как идеальный.
Под идеальным понимают газ, в котором силы межмолекулярного взаимодействия отсутствуют, а сами молекулы рассматриваются как материальные точки.
Все реальные газы при высоких температурах и малых давлениях почти полностью подходят под понятие идеального газа, и по своим свойствам практически не отличаются от него. Введение понятия идеального газа позволило получить простые математические зависимости между параметрами состояния и создать стройную теорию термодинамических процессов. Рассмотрим некоторые свойства газов и газовых смесей.
Уравнения состояния идеального газа
Функциональную связь между термодинамическими параметрами идеального газа впервые получил в 1834 г. французский физик Б. Клапейрон, использовавший при этом свойства газов, открытые англичанином Р. Бойлем и французом Ж. Гей-Люссаком.
Р. Бойль в 1662г. экспериментально установил следующую законо -мерность:
при одной и той же температуре удельный объем идеального газа изменяется обратно пропорционально изменению его давления, т.е.
p v = . (2.1)
Независимо от Р.Бойля эту же закономерность в 1676 г. получил французский физик Э. Мариотт, поэтому выражение (2.1) именуют законом Бойля-Мариотта.
Ж. Гей-Люссак в 1802 г. опытным путем установил, что
при одном и том же давлении удельный объем идеального газа изменяется прямо пропорционально изменению его абсолютной температуры, т.е.
. ( 2.2)
Рассмотрим два состояния 1 кг идеального газа. Первое состояние (С) соответствует нормальным физическим условиям и характеризуется параметрами p, v, T; второе состояние (C ) – произвольное, имеющее параметры p, v, T. Изобразим графически функцию (2.1) в координатах pv при температурах T = const и T = cоnst. Любая точка из полученных кривых изображает состояние газа, характеризуемое тремя конкретными параметрами (давлением, удельным объемом и температурой). Эти состояния изображены на рис. 2.1
Используя закономерность Бойля- Мариотта, выразим р через р и v.
где v ‘ – удельный объем газа при давлении p и температуре T.
Из закона Гей-Люссака следует, что
Подставляя в (2.3) значение v ‘ из выражения (2.4), получим:
. (2.5) Правая часть равенства (2.5) имеет для заданного газа конкретное численное значение, в термодинамике его обозначают R,т. е. .
Величину R называют г а з о в о й п о с т о я н н о й и измеряют в Дж/(кг·К). Для произвольного состояния газа уравнение (2.5) будет иметь вид:
. (2.6)
Выражение (2.6) называют уравнением Клапейрона. Оно устанавливает, что
для выбранного состояния произведение давления на удельный объем, деленное на абсолютную температуру, есть величина постоянная.
Найдем числовое значение газовой постоянной R и выявим ее физическую сущность. Для этого обратимся к еще одной закономерности поведе-
ния газов, экспериментально установленной в 1811г. итальянским ученым
При одинаковых давлениях и температурах одинаковые количества различных газов занимают один и тот же объем.
В СИ за единицу количества вещества принят м о л ь (М). Моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде – 12 массой 0,012 кг. Установлено, что в 12 г углерода содержится 6·10 23 атомов. Такое количество структурных элементов в любом другом веществе имеет другую массу. Моль – расчетная единица и эталона для его воспроизведения не существует.
Массу одного моля вещества называют м о л я рн о й м а с с о й Молярную массу обозначают через μ. Единица молярной массы – кг/моль. При численном выражении молярной массы различных веществ иногда за единицу количества вещества принимают 1000 молей – 1 кмоль.
Величины, характеризующие количественную единицу вещества в молях, условимся обозначать чертой сверху. Тогда объем моля какого-либо газа будет равен произведению удельного объема газа на его молярную массу, т.е. = μ.
Согласно закону Авогадро, для различных газов при одинаковых условиях будет иметь:
Экспериментально установлено, что при нормальных физических условиях (T = 273,15; p = 760 мм рт. ст. = 101325 Па) объем одного моля любого газа = 22,41 м 3 /моль.
Из определения газовой постоянной следует, что
R = .
Умножив обе части этого равенства на μ и подставив численные значения p, и Т, получим:
R 8314 Дж/(моль·К). Величину μR обозначают и называют у н и в е р с а л ь н о й (молярной)
Универсальная газовая постоянная для одного моля всех газов, независимо от их природы, является величиной постоянной и равной:
= 8314 Дж/(моль·К).
Отсюда, газовая постоянная 1 кг конкретного газа вычисляется как
R = . (2.8)
Для одного и того же газа, в зависимости от его массы, уравнение состояния может быть записано по-разному:
для 1 кг p v = R T, (2.9)
для m кг p V = m R Т , (2.10)
для одного моля p = T. (2.11)
Чтобы уяснить физический смысл газовой постоянной, запишем уравнение (2.10) для одной и той же массы газа, находящейся в двух различных состояниях при одинаковом давлении:
Вычитая из второго уравнения первое, получаем:
R = .
Числитель в полученном выражении представляет собой работу газа в процессе при постоянном давлении. Следовательно, если разность температур равна одному кельвину, а масса газа – одному килограмму, то газовая постоянная есть работа расширения 1 кг газа при увеличении его температуры на 1 кельвин в изобарном процессе.
Дата добавления: 2015-02-16 ; просмотров: 1325 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Работа тепловых двигателей
Какв тепловых двигателях происходит преобразование внутренней энергии в механическую?
С тепловыми двигателями учащихся знакомят впервые в VIII классе, когда рассматривают общий принцип работы тепловых двигателей (совершение полезной работы за счет внутренней энергии рабочего тела), изучают двигатель внутреннего сгорания и паровую турбину, а также вводят понятие о КПД тепловых двигателей. Основное внимание уделяют конструкции и принципам работы названных выше двигателей. В курсе X класса рассматривают энергетические процессы, происходящие при работе тепловых двигателей.
При изучении нового материала повторяют то, что уже известно учащимся, в частности понятие теплового двигателя как такого устройства, в котором внутренняя энергия топлива превращается в механическую. Тепловой двигатель совершает полезную работу за счет внутренней энергии при переходе тепла от более горячего тела к более холодному. Делают вывод: любой тепловой двигатель имеет три части: нагреватель, рабочее тело и холодильник.
Рабочее тело (им может быть пар, газ или специальная смесь) получает некоторое количество теплоты ( ) от нагревателя и расширяется. При расширении рабочее тело совершает работу. При сжатии рабочее тело отдает количество теплоты ( ) холодильнику. Температуру холодильника и нагревателя поддерживают постоянной, при этом температура нагревателя всегда выше температуры холодильника ( ). Это следует из того, что двигатель совершает полезную работу только в том случае, когда работа расширения больше работы сжатия, а она больше тогда, когда расширение происходит при более высокой температуре, чем сжатие.
Рисунок 6. – Цикл Карно
Необходимо подвести школьников к пониманию того, что, двигатель должен работать циклично. После этого целесообразно рассмотреть принцип работы идеальной тепловой машины Карно, рабочим телом в которой является идеальный газ. При расширении газа во время его контакта с нагревателем температуру поддерживают постоянной, во время сжатия и контакта с холодильником температура также постоянна, следовательно, расширение и сжатие происходят изотермически (на рисунке 6 соответственно изотермы 1 – 2и 3 – 4). Но если температура расширения больше температуры сжатия, то необходимо произвести процессы, при которых температура меняется от до , а затем от до . В принципе это осуществимо при изобарном, изохорном или адиабатном процессах. Наиболее целесообразным является адиабатный процесс (процесс, происходящий без теплообмена), так как именно это условие является условием максимальной работы (на рисунке 6 2 – 3и 4 – 1– адиабаты). Полезная работа численно равна площади заштрихованной фигуры.
Важным является вопрос о коэффициенте полезного действия. Как известно, КПД – это отношение полезной работы к количеству теплоты, полученному от нагревателя:
.
Задача повышения КПД – одна из основных технических задач. Она связана прежде всего с созданием материалов, имеющих достаточную прочность при высоких температурах. В настоящее время температурные границы рабочего тела составляют 303 – 853 К. КПД идеальной машины, работающей по циклу Карно, при таких значениях температур составляет 65%. Однако с учетом потерь КПД примерно равен 40%. Необходимо, чтобы десятиклассники поняли принципиальное отличие решения задачи повышения КПД тепловых двигателей от решения этой же задачи применительно к механическим и электрическим двигателям. КПД последних стремятся приблизить к 100%, а КПД тепловых двигателей к КПД идеальной машины Карно, работающей при тех же температурах холодильника и нагревателя. Поэтому повышение КПД тепловых двигателей связано с повышением температуры нагревателя и понижением температуры холодильника.
В заключение изучения рассматриваемой темы обращают внимание учащихся на значение развития теплоэнергетики для народного хозяйства, в частности рассказывают о той экономии, которую дает стране развитие теплоэлектроцентралей.
КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ УЧЕБНОГО ПЛАНА ТЕМЫ «ОСНОВЫ ТЕРМОДИНАМИКИ» НА ОСНОВЕ ПРОБЛЕМНОЙ ТЕХНОЛОГИИ ОБУЧЕНИЯ
№п/п | Тема урока | Тип урока | Актуализация знаний | Элементы содержания | Демонстрации (приборы и материалы) | Колчас | д/з |
Термодинамическая система. Термодинамическое равновесие. Внутренняя энергия. Внутренняя энергия идеального одноатомного газа. | Урок изучения нового материала | Внутренняя энергия. Способы изменения внутренней энергии. | Тепловое движение молекул. Закон термодинамики. Порядок и хаос. | «Внутренняя энергия». | §9 | ||
Работа в термодинамике. Количество теплоты. | Комбинированный Урок | Внутренняя энергия. Способы изменения внутренней энергии. | Количество теплоты, удельная теплоемкость. Физические условия на Земле, обеспечивающие существование жизни человека. | «Теплоемко-сть». | §10 | ||
Решение задач по теме «Работа в термодинамике . Количество теплоты» | Урок решения задач | ||||||
Первый закон термодинамики. Применение первого закона термодинамики к изопроцессам в идеальном газе. Адиабатный процесс | Урок изучения нового материала | Тепловое движение молекул. Закон термодинамики. Порядок и хаос. | Первый закон термодинамики. Необратимость процессов в природе. | Законы термодинамики | §11 | ||
Решение задач по теме «Первый закон термодинамики» | Урок решения задач | ||||||
Решение графических задач по теме «Первый закон термодинамики» | Урок решения задач | ||||||
Тепловые двигатели. Коэффициент полезного действия. ДВС | Комбинированный урок | Тепловые двигатели. | Принципы действия тепловых двигателей. КПД тепловых двигателей. Рациональное природопользование и защита окружающей среды | «Четырехтактный ДВС», «Компрессионный холодильник» | §12 | ||
Решение задач по теме «КПД тепловых двигателей». | Урок решения задач | ||||||
Обобщение и систематизация знаний по теме «Основы термодинамики» | Обобщение и систематизация знаний | ||||||
Контрольная работа № 2 «Основы термодинамики» | Урок контроля | Выполнение К.Р. |
Организация отдельных уроков по теме «Основы термодинамики»
Тема урока: «Термодинамическая система. Термодинамическое равновесие. Внутренняя энергия. Внутренняя энергия идеального одноатомного газа»
Ведущая идея урока:Термодинамика – раздел физики, изучающий возможности использования внутренней энергии тел для совершения механической работы. Изменение внутренней энергии всегда происходит за счет энергии других тел: при теплопередаче – за счет изменения внутренней энергии; при совершении работы – за счет механической энергии.
Задачи:
1. Образовательная–обеспечить формирование понятия «термодинамика», «внутренняя энергия»; усвоение формулы для расчета внутренней энергии идеального газа.
2. Развивающая – развитие способов мыслительной деятельности (анализ, сравнение, обобщение), развитие речи (владение физическими понятиями, терминами), развитие познавательного интереса учащихся.
3. Воспитательная – формирование научного мировоззрения, воспитание устойчивого интереса к предмету, положительного отношения к знаниям.
Тип урока: изучение нового материала.
Что называют рабочим телом теплового двигателя
Тепловым двигателем называется устройство, способное превращать полученное количество теплоты в механическую работу. Механическая работа в тепловых двигателях производится в процессе расширения некоторого вещества, которое называется рабочим телом . В качестве рабочего тела обычно используются газообразные вещества (пары бензина, воздух, водяной пар). Рабочее тело получает (или отдает) тепловую энергию в процессе теплообмена с телами, имеющими большой запас внутренней энергии. Эти тела называются тепловыми резервуарами .
Как следует из первого закона термодинамики, полученное газом количество теплоты полностью превращается в работу при изотермическом процессе, при котором внутренняя энергия остается неизменной ():
. |
Но такой однократный акт преобразования теплоты в работу не представляет интереса для техники. Реально существующие тепловые двигатели (паровые машины, двигатели внутреннего сгорания и т. д.) работают циклически . Процесс теплопередачи и преобразования полученного количества теплоты в работу периодически повторяется. Для этого рабочее тело должно совершать круговой процесс или термодинамический цикл , при котором периодически восстанавливается исходное состояние. Круговые процессы изображаются на диаграмме () газообразного рабочего тела с помощью замкнутых кривых (рис. 3.11.1). При расширении газ совершает положительную работу , равную площади под кривой , при сжатии газ совершает отрицательную работу , равную по модулю площади под кривой . Полная работа за цикл на диаграмме () равна площади цикла. Работа положительна, если цикл обходится по часовой стрелке, и отрицательна, если цикл обходится в противоположном направлении.
Общее свойство всех круговых процессов состоит в том, что их невозможно провести, приводя рабочее тело в тепловой контакт только с одним тепловым резервуаром. Их нужно, по крайней мере, два. Тепловой резервуар с более высокой температурой называют нагревателем , а с более низкой – холодильником . Совершая круговой процесс, рабочее тело получает от нагревателя некоторое количество теплоты и отдает холодильнику количество теплоты . Полное количество теплоты , полученное рабочим телом за цикл, равно
. |
При обходе цикла рабочее тело возвращается в первоначальное состояние, следовательно, изменение его внутренней энергии равно нулю (). Согласно первому закону термодинамики,
. |
Отсюда следует:
. |
Коэффициент полезного действия указывает, какая часть тепловой энергии, полученной рабочим телом от «горячего» теплового резервуара, превратилась в полезную работу. Остальная часть () была «бесполезно» передана холодильнику. Коэффициент полезного действия тепловой машины всегда меньше единицы (). Энергетическая схема тепловой машины изображена на рис. 3.11.2.
В двигателях, применяемых в технике, используются различные круговые процессы. На рис. 3.11.3 изображены циклы, используемые в бензиновом карбюраторном и в дизельном двигателях. В обоих случаях рабочим телом является смесь паров бензина или дизельного топлива с воздухом. Цикл карбюраторного двигателя внутреннего сгорания состоит из двух изохор (, ) и двух адиабат (, ). Дизельный двигатель внутреннего сгорания работает по циклу, состоящему из двух адиабат (, ), одной изобары () и одной изохоры (). Реальный коэффициент полезного действия у карбюраторного двигателя порядка 30 %, у дизельного двигателя – порядка 40 %.
В 1824 году французский инженер С. Карно рассмотрел круговой процесс, состоящий из двух изотерм и двух адиабат, который сыграл важную роль в развитии учения о тепловых процессах. Он называется циклом Карно (рис. 3.11.4).
Цикл Карно совершает газ, находящийся в цилиндре под поршнем. На изотермическом участке () газ приводится в тепловой контакт с горячим тепловым резервуаром (нагревателем), имеющим температуру . Газ изотермически расширяется, совершая работу , при этом к газу подводится некоторое количество теплоты . Далее на адиабатическом участке () газ помещается в адиабатическую оболочку и продолжает расширяться в отсутствие теплообмена. На этом участке газ совершает работу . Температура газа при адиабатическом расширении падает до значения . На следующем изотермическом участке () газ приводится в тепловой контакт с холодным тепловым резервуаром (холодильником) при температуре . Происходит процесс изотермического сжатия. Газ совершает работу и отдает тепло , равное произведенной работе . Внутренняя энергия газа не изменяется. Наконец, на последнем участке адиабатического сжатия газ вновь помещается в адиабатическую оболочку. При сжатии температура газа повышается до значения , газ совершает работу . Полная работа , совершаемая газом за цикл, равна сумме работ на отдельных участках:
. |
На диаграмме () эта работа равна площади цикла.
Процессы на всех участках цикла Карно предполагаются квазистатическими. В частности, оба изотермических участка (1–2 и 3–4) проводятся при бесконечно малой разности температур между рабочим телом (газом) и тепловым резервуаром (нагревателем или холодильником).
Как следует из первого закона термодинамики, работа газа при адиабатическом расширении (или сжатии) равна убыли его внутренней энергии. Для 1 моля газа
, |
где и – начальная и конечная температуры газа.
Отсюда следует, что работы, совершенные газом на двух адиабатических участках цикла Карно, одинаковы по модулю и противоположны по знакам
. |
По определению, коэффициент полезного действия цикла Карно есть
Любой участок цикла Карно и весь цикл в целом может быть пройден в обоих направлениях. Обход цикла по часовой стрелке соответствует тепловому двигателю, когда полученное рабочим телом тепло частично превращается в полезную работу. Обход против часовой стрелки соответствует холодильной машине , когда некоторое количество теплоты отбирается от холодного резервуара и передается горячему резервуару за счет совершения внешней работы . Поэтому идеальное устройство, работающее по циклу Карно, называют обратимой тепловой машиной .
В реальных холодильных машинах используются различные циклические процессы. Все холодильные циклы на диаграмме () обходятся против часовой стрелки. Энергетическая схема холодильной машины представлена на рис. 3.11.5.
§ 5.11. Тепловые двигатели
Большая часть двигателей на Земле — это тепловые двигатели, т. е. устройства, превращающие внутреннюю энергию топлива в механическую энергию.
Необратимость процессов в природе налагает определенные ограничения на возможность использования внутренней энергии для совершения работы тепловыми двигателями. Это прямо отражено во втором законе термодинамики в формулировке Кельвина (см. § 5.9).
Простейшая модель тепловой машины
Простейшую тепловую машину можно собрать из стакана с водой, капли анилина и горелки (рис. 5.14). Так как сосуд с водой подогревается снизу, то температура воды Т2 в верхних слоях, естественно, ниже, чем температура Т1 внизу.
Плотность анилина и плотность воды по-разному зависят от температуры. При Т1 плотность анилина меньше плотности воды, а при Т2 больше. Если влить холодный анилин в воду, то он опустится на дно. После нагревания плотность анилина уменьшается и он всплывает. У поверхности вследствие охлаждения плотность анилина станет больше плотности воды, и капля вновь опустится на дно. Затем весь цикл повторится.
При каждом цикле совершается положительная работа по преодолению трения при движении капли в воде. Если каплю внизу «нагружать», а вверху «разгружать», то такая тепловая машина может быть использована для подъема груза.
Если покрыть стакан стеклянной пластинкой, то температура верхних слоев воды увеличится и машина перестанет работать.
В нашей простейшей машине происходят процессы, общие для всех тепловых двигателей. Машина получает от нагревателя (горелки) количество теплоты Q1 и передает холодильнику (в данном случае атмосфере) количество теплоты Q2. За счет того, что Q1 > Q2, и совершается работа.
Принципы действия тепловых двигателей
Чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины. Во всех тепловых двигателях эта разность давлений достигается за счет повышения температуры рабочего тела на сотни градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива.
Рабочим телом у всех тепловых двигателей является газ (см. § 3.11), который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через T1. Эту температуру в паровых турбинах или машинах приобретает пар в паровом котле. В двигателях внутреннего сгорания и газовых турбинах повышение температуры происходит при сгорании топлива внутри самого двигателя. Температуру T1 называют температурой нагревателя.
Роль холодильника
По мере совершения работы газ теряет энергию и неизбежно охлаждается до некоторой температуры Т2. Эта температура не может быть ниже температуры окружающей среды, так как в противном случае давление газа станет меньше атмосферного и двигатель не сможет работать. Обычно температура Т2 несколько больше температуры окружающей среды. Ее называют температурой холодильника. Холодильником являются атмосфера или специальные устройства для охлаждения и конденсации отработанного пара — конденсаторы. В последнем случае температура холодильника может быть несколько ниже температуры атмосферы.
Таким образом, в двигателе рабочее тело при расширении не может отдать всю свою внутреннюю энергию на совершение работы. Часть энергии неизбежно передается атмосфере (холодильнику) вместе с отработанным паром или выхлопными газами двигателей внутреннего сгорания и газовых турбин. Эта часть внутренней энергии безвозвратно теряется. Именно об этом и говорит второй закон термодинамики в формулировке Кельвина.
Принципиальная схема теплового двигателя изображена на рисунке 5.15. Рабочее тело двигателя получает при сгорании топлива количество теплоты Q1, совершает работу А’ и передает холодильнику количество теплоты |Q2| 10 кВт. Когда эта мощность достигнет 3 • 10 12 кВт, то средняя температура атмосферы Земли повысится примерно на 1 °С. Дальнейшее повышение температуры может создать угрозу таяния ледников и катастрофического повышения уровня Мирового океана. Но этим далеко не исчерпываются негативные последствия применения тепловых двигателей. Растет выброс в атмосферу микроскопических частиц — сажи, пепла, измельченного топлива. Они изменяют оптические свойства атмосферы, соотношение между поглощенной и отраженной солнечной энергией, увеличивают «парниковый эффект», обусловленный повышением концентрации углекислого газа в течение длительного промежутка времени. Углекислый газ задерживает тепловое излучение Земли, что приводит к повышению температуры атмосферы.
Выбрасываемые в атмосферу токсические продукты горения: оксиды серы, азота, металлов, угарный газ (СО), канцерогенные вещества — продукты неполного сгорания органических топлив — оказывают вредное воздействие на флору и фауну. Особую опасность в этом отношении представляют автомобили, число которых угрожающе растет, а очистка отработанных газов затруднена.
Все это ставит ряд серьезных проблем перед обществом. Наряду с важнейшей задачей повышения КПД тепловых двигателей требуется проводить ряд мероприятий по охране окружающей среды. Необходимо повышать эффективность сооружений, препятствующих выбросу в атмосферу вредных веществ; добиваться более полного сгорания топлива в автомобильных двигателях. Уже сейчас не допускаются к эксплуатации автомобили с повышенным содержанием СО в отработанных газах. Осуществляется перевод автомобильных двигателей на сжиженный газ в качестве топлива. Обсуждается возможность применения в качестве топлива водорода, в результате сгорания которого образуется вода.
Другое направление прилагаемых усилий — это увеличение эффективности использования энергии, экономия ее на производстве и в быту. Нельзя оставлять невыключенными электроприборы, допускать бесполезные потери топлива при обогревании помещений. Примером нерационального использования энергии служат попытки введения в эксплуатацию гражданских сверхзвуковых самолетов, потребляющих в 8 раз больше топлива, чем обычные.
Решение перечисленных проблем жизненно важно для человека. Организация охраны окружающей среды требует усилий в масштабе земного шара.
Большую часть механической и электрической энергии вырабатывают тепловые двигатели. Пока равноценной замены им нет. В то же время тепловые двигатели оказывают отрицательное влияние на окружающую среду и условия существования человека на Земле.