0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Чему равна мощность трехфазного двигателя

Расчет трехфазной цепи для жилого дома

Вам необходимо сделать трехфазное питание для дома? О том, как это сделать, читайте описание ниже.

Прежде всего, нужно провести расчет трехфазной цепи.

Порядок распределения нагрузки по фазам

1. Симметрично распределить нагрузку на три фазы. Мощность на каждой фазе будет равна мощности трехфазной нагрузки, кратная трем.
2. Рассчитать нагрузку на каждую фазу.
3. В результате, нужно добиться того, чтобы на каждой фазе, в момент полной загрузки сети, была примерно одинаковая мощность.
4. Определить ток на самой загруженной фазе. После этого необходимо проверить, чтобы при максимальной мощности ток был меньше тока срабатывания входного трехфазного автомата.

Расчет нагрузки по фазам

Допустим, у вас имеется трехфазный двигатель мощностью 1500 Вт. Соответственно, на каждую фазу приходится по 500 Вт активной мощности. Предположим, что cos фи=0,8. Полная мощность равна: 500/0,8. Получается, что 625 Вт нужно распределить на каждую фазу.

Кроме двигателя к фазам, вероятно, подключены и другие потребители. Например, кроме 500 Вт подключается освещение на 200 Вт и конвектор на 300 Вт. Все мощности суммируются по горизонтали. Реактивная мощность остается без изменений (если не используются нагрузки с реактивной составляющей).

По теореме Пифагора можно определить реактивную мощность.

Но на практике это довольно сложные расчеты. Поэтому, это рассчитывается приближенно: 625 Вт + 500 Вт = 1150 Вт. Эта сумма получается больше точных расчетов по формуле, но страшного ничего нет. Расчет произведен с небольшим запасом.

На практике для приблизительных расчетов достаточно сложить все полные мощности и по ним определить мощность автомата для требуемой нагрузки.

Разводка однофазного щитка

Например, к щиту подключаются — плита (варочная панель) 7,2 кВт; духовой шкаф 4,3 кВт; кухня 5,5 кВт; комната 3,5 кВт; ванная 3,5 кВт; двигатель 3-фазный 1,5 кВт; розетка 3-фазная.

Рассмотрим такую ситуацию: у вас была однофазная сеть и теперь дали разрешение на проведение трехфазной. В этом случае нужно все потребители распределить по фазам.

Самый мощный прибор это варочная панель (плита) 7,2 кВт, которую нужно посадить на первую фазу. На вторую подключить духовой шкаф и комнату. В итоге получается 7,8 кВт. А на третью фазу подключить кухню и ванную комнату. Общая мощность получится 9 кВт. Прибавим еще мощность двигателя, разделив ее на каждую фазу одинаково. В итоге получилось: на первой фазе 7,8 кВт; на второй фазе 9,4 кВт; на третьей — 9,6 кВт. Приблизительно распределили нагрузку по фазам по возможности равномерно. Посмотрим, какой в результате получился щиток.

  • Итак, трехфазный щиток состоит из входного автомата и трехфазного счетчика. Далее, на первую фазу подключен автомат 40 Ампер, через который питается плита мощностью 7,2 кВт. Если просуммировать с двигателем, будет 7,8 кВт.
  • Ко второй фазе через автомат 25 Ампер подключен духовой шкаф и микроволновая печь. Через второй автомат 16 Ампер подсоединена комната проектной мощностью 3,5 кВт. Общая мощность получилась 8,4 кВт.
  • К третьей фазе подключен ДИФ автомат и обычный автомат. Через обычный автомат на 25 Ампер подключена кухня проектной мощностью 5,5 кВт. Через ДИФ автомат подключена ванная комната проектной мощностью 3,5 кВт. Общая мощность на третью фазу получается 9,6 кВт.
Распределение полной мощности двигателя на три фазы по 0,6 кВт:
  • первая фаза: 7,2+0,6=7,8 кВт;
  • вторая фаза: 4,3+3,5+0,6=8,4 кВт;
  • третья фаза: 5,5+3,5+0,6=9,6 кВт.

По всем трем фазам максимальная мощность составляет 9,6 кВт. Если проектная мощность 8,8 кВт и входной автомат на 40 Ампер, а у нас проектная мощность на одной из трех фаз 9,6 кВт, то такой автомат не выдержит нагрузку. Если третью фазу загрузить на полную мощность, то этот автомат отключится. Поэтому, входной автомат нужно ставить на 50 Ампер.

Из этого примера видно, что при небольшом количестве потребителей можно полноценно загрузить трехфазную цепь. Иногда возникает необходимость подключить кондиционеры, электрический теплый пол и другие потребители высокой мощности.

Прежде чем покупать электрическое оборудование, надо рассчитать потребляемую мощность. Потянет ли входной автомат и разрешенный лимит по току на электроснабжение дома?

После подсчета всех нагрузок по фазам можно определить, какой мощности нужен входной автомат. Узнать в энергосбыте, какой резерв по току вам дадут. Возможно, разрешение дадут только на 25 Ампер. Придется покупать приборы из расчета на эти 25 Ампер. На фазу дается только 5,5 кВт.

В этом случае, что делать с электроплитой на 7,2 кВт? Современные электроплиты и варочные панели имеют подключение к двухфазной цепи, а иногда и к трехфазной. Кроме земляного и нулевого вывода имеется L1 и L2 (иногда L1, L2, L3). В первом случае для подключения двухфазной цепи, а во втором – подключение трехфазной цепи. Такие мощные нагрузки предусмотрены специально, чтобы можно было их распределить.

Когда делаете проект и запрашиваете проектную мощность, пытайтесь получить разрешение на мощность с запасом.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта , буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Как рассчитать мощность, силу тока и напряжение: принципы и примеры расчета

Установка автоматических выключателей, выбор сечения провода, подбор нового электроприбора для домашних целей – все это требует знания и умения манипулировать основными характеристиками электрического тока. Напряжение, сила тока, мощность неразрывно связаны между собой, изменение одного оказывает влияние на остальные величины. Эту взаимосвязь, а также определение разных характеристик рассмотрим в этой статье.

Как узнать ток, зная мощность и напряжение?

В металлах, из которых сделаны провода, находятся свободные электроны, участвующие в работе. На клеммах источника тока создается сила, заставляющая заряды перемещаться по проводнику. Эта сила называется электродвижущей (э. д. с.). В постоянных цепях электроны выходят из источника с одной клеммы и «втягиваются» другой. При движении электронов совершается какая-то работа, зависящая от напряжения и тока. Связь силы тока с мощностью и напряжением видна в формуле:

P = UI,

где P – мощность, Вт; U – напряжение, В; I – ток, А.

Что такое ток? Для наглядности возьмем несколько рек, вода в которых течет с одинаковой скоростью. Однако русло у всех разное: одни реки широкие, другие узкие, какие-то глубокие или мелкие. Понятно, что объем воды, проходящий через контрольную точку, у всех будет разным. Выходит, что чем глубже или шире река, тем большее воды проходит по ней.

То же самое относится к электронам – чем больше их проходит через точку на проводнике, тем больший ток мы имеем. В отличие от рек, которые в половодье могут разливаться, избыток носителей заряда не может выходить за пределы провода. Как рассчитать пропускную способность кабеля рассмотрим в последнем подзаголовке.

Читать еще:  V16 двигатель что значит

Сравним зависимость силы тока от мощности и напряжения . Для этого воспользуемся приведенной выше формулой.

Внимание! Эта формула предназначена для постоянного тока. Отличие от переменного напряжения будет рассмотрено в следующем подзаголовке.

Сначала все значения следует привести к единой системе. Если мощность выражена в киловаттах или милливаттах, их нужно перевести в ватты. В одном киловатте 1 000 ватт. В одном ватте содержится 1 000 милливатт. То же самое относится и к напряжению. Если переделать формулу в такой вид: I = P U

Как узнать напряжение, зная силу тока?

Снова поговорим о постоянном напряжении. Напряжение – это сила, действующая на заряженные частицы, заставляющая их двигаться. Вернемся к реке. Даже если она будет широкой и глубокой, но вода в ней не будет двигаться, она не сможет совершать какую-то работу. Движение воды происходит из-за перепада уровней поверхности земли. Чем больше разница между уровнями дна на каком-то участке, тем быстрее будет поток, и тем большую работу может совершать вода.

Напряжение в каком-то смысле можно сравнить с таким перепадом: чем выше напряжение при одном и том же токе, тем большей мощностью обладает энергия, проходящая по проводнику. При постоянном напряжении электроны движутся всегда в одном направлении, но существуют более сложные схемы изменения напряжения или тока:

  • переменный;
  • периодический;
  • синусоидальный;
  • квазистационарный;
  • высокочастотный;
  • пульсирующий;
  • однонаправленный.

Эти разновидности часто сопутствуют друг другу. Так в домашней сети применяются сразу три разновидности: переменный, периодический, синусоидальный. Переменное напряжение указывает на противоположные знаки напряжения в течение одного периода. Происходит это следующим образом: напряжение от ноля поднимается до максимального положительного значения, затем опускается до ноля и опускается до максимального отрицательного значения. Поскольку такие изменения происходят за равный промежуток времени, их называют периодическими. Плавные переходы носят синусоидальный вид, что соответствует названию такого тока.

Переменное напряжение может быть:

  • однофазным;
  • двухфазным;
  • трехфазным.

В первом случае есть фазный и нулевой провод. При подключении нагрузки электроны движутся то в одном направлении, то в другом. Чтобы определить соотношение напряжения и мощности в переменном токе используют среднеквадратическое значение. Оно определяется по нагреванию нагрузки одного и того же номинала. Сначала пропускают постоянный ток одного напряжения в течение определенного времени и замеряют температуру нагрева испытуемого тела. Затем опытным путем подбирают такое переменное напряжение, при котором за то же время происходит такое же нагревание.

Для однофазного переменного тока оно будет меньше в от амплитудного значения. То есть в сети вольтметр показывает 220 В среднеквадратическое значение, а амплитудное будет составлять 311 В.

Пояснение! На переменное напряжение сильное влияние оказывает емкость и индуктивность, снижая полезную мощность, но в этой статье мы подробно это не будем разбирать.

Двухфазный ток может быть либо сдвинутым, как, например, взятые две фазы у трехфазной сети, либо противоположным. В последнем случае фазы работают таким образом, что максимальное положительное значение одной фазы, соответствует максимальному отрицательному значению другой.

Для создания вращающегося магнитного поля применяют трехфазную сеть. Обычно к ней подключают электродвигатели. Если обмотки соединены по схеме треугольника, то суммарная мощность каждой фазы будет равна линейной. При подключении по схеме звезда суммарная мощность будет в больше линейной. Схема подключения электродвигателя указана на его шильдике (табличке).

Определение напряжения при известном токе и мощности, осуществляется по той же формуле. Если определяется трехфазное напряжение, то следует учитывать схему подключения нагрузки и добавлять или нет коэффициент .

Как рассчитать мощность, зная силу тока и напряжения?

Разобравшись с током и напряжением, уже будет легче посчитать мощность, используя все ту же формулу. Однако для переменного тока различают несколько мощностей:

  • мгновенная;
  • активная;
  • реактивная;
  • полная.

Мгновенная мощность рассчитывается в момент измерения и может сильно отличаться от полной мощности. Активной называют полезную мощность, которая определяется по формуле:

Косинус фи в синусоидальном токе является коэффициентом мощности, выражается в процентах от 0 до 100 или цифрах от 0 до 1. Показывает сдвиг фаз между током и напряжением. Для трехфазной сети общая активная мощность складывается из отдельных фазных мощностей.

Реактивная мощность учитывает расход энергии на реактивную нагрузку (индуктивность, конденсатор, обмотка электродвигателя), которая снова возвращается к источнику. Для этого используется формула:

Полная мощность состоит из активной и реактивной, причем реактивная может иметь отрицательный или положительный знак.

Как определить потребляемую мощность цепи, имея тестер, который мерит сопротивление?

Кроме перечисленных формул, есть еще и другие, например, такие:

С их помощью можно узнать мощность, не имея данных о напряжении или токе. Стоит отметить, что сопротивление измеряется в Омах.

Осторожно! При измерении сопротивления цепи в ней не должно быть электричества.

Если сопротивление известно, тогда можно узнать, как рассчитать нагрузку по току . Для этого

где R – сопротивление нагрузки, P – мощность нагрузки, I – ток нагрузки. Однако нагрузки, содержащие емкость или индуктивность, таким способом нельзя рассчитать. Также не получится узнать мощность лампы накаливания, измерив сопротивление ее нити, потому что вольфрам при нагревании увеличивает свое сопротивление.

Формула расчета сечения провода и как определяется сечение провода

Раньше уже говорилось, что чрезмерный ток недопустим для проводов. Это связано с их перегревом. Поэтому каждый проводник способен пропускать через себя ограниченный ток. Почему провода греются? Любой материал в нормальных условиях имеет собственное сопротивление. Проходящий через него ток производит работу по нагреву металла. Этот нагрев допускается до определенной температуры, после чего начинается его плавление.

Рекомендуем прочитать: Принцип работы регулятора напряжения

Существуют специальные таблицы, помогающие подобрать сечение провода в зависимости от рабочего тока. Сечение – это площадь проволоки в разрезе. Как правило, такой разрез имеет вид круга. Чтобы найти сечение, необходимо найти площадь этого круга. Можно воспользоваться формулой:

где S – площадь круга или сечение в мм 2 ; П – постоянное число равное 3,14159265; r – радиус круга. Для определения радиуса диаметр делят на два, затем подставляют в формулу.

Интересно! Многожильный и одножильный провод с одинаковым диаметром способны пропускать разную силу тока.

Мощность, напряжение, сила тока – это основные величины, зависящие друг от друга. Используя одну из приведенных формул, можно найти необходимую величину.

Практическая работа, расчет параметров асинхронного двигателя.

Расчет мощности электродвигателя

Расчет мощности электродвигателя по току можно произвести с помощью нашего онлайн калькулятора:

Читать еще:  Блок запуска двигателя ваз

Расчет мощности трехфазного электродвигателя

Полученный результат можно округлить до ближайшего стандартного значения мощности.

Стандартные значения мощностей электродвигателей: 0,25; 0,37; 0,55; 0,75; 1,1; 1,5; 2,2; 3,0; 4,0; 5,5; 7,5; 11; 15; 18,5; 22; 30; 37; 45; 55; 75 кВт и т.д.

Расчет мощности двигателя производится по следующей формуле:

P=√3UIcosφη

  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствииопределяется расчетным путем);
  • cosφ Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

Режимы работы асинхронных машин

Направление вращения асинхронного электродвигателя при прямом порядке чередования фаз (а


b

с
) принимаем за положительное (первый квадрант), а при обратном порядке чередования фаз (
a

c

b
) — за отрицательное (третий квадрант). Во втором и четвертом квадрантах представлены характеристики тормозных режимов.

Советуем изучить — Схемы комплектных трансформаторных подстанций КТП

Двигательный режим

Двигательный режим характеризуется изменением частоты вращения электродвигателя от нуля (точка пуска) до W1 (точка идеального холостого хода) при соответствующем изменении момента (тока) от М

пуск (
I
пуск) до нуля.

Устойчивый режим работы обеспечивается частью механической характеристики АД лежащей в диапазоне изменения скольжения от нуля до s

Рабочие характеристики асинхронного электродвигателя строят в функции полезной мощности электродвигателя Р

Рекуперативное торможение

Рекуперативное торможение (генераторный режим) с отдачей энергии в сеть имеет место тогда, когда под влиянием нагрузочного момента или другой причины угловая частота вращения ротора асинхронной машины превысит синхронную частоту W1. В генераторном режиме скольжение s

Динамическое торможение

Режим динамического торможения применяется для быстрой остановки вращающегося двигателя. Режим динамического торможения осуществляется следующим образом: фазы статора отключаются от сети переменного тока и одна фаза, если выведен нуль, или две фазы, соединенные последовательно, подключаются к источнику постоянного тока. Постоянный ток, создает неподвижное в пространстве магнитное поле, в котором вращается ротор. Создается тормозной момент и двигатель останавливается.

Торможение противовключением

Режим противовключения имеет место тогда, когда во вращающемся двигателе переключают две фазы статорной обмотки, что приводит к изменению направления вращения поля статора: ротор и поле статора вращаются в противоположных направлениях. В режиме противовключения скольжение s

>l. Двигатель потребляет из сети активную мощность, в то же время потребляется механическая мощность вращающегося ротора. Обе эти мощности преобразуются в потери, так как полезная мощность равна нулю. Ротор энергично тормозится. Если в момент, когда
s
=1, фазы обмотки статора не будут отключены от сети, то ротор будет разгоняться в противоположном исходному направлению вращения и произойдет реверс двигателя.

Расчет тока электродвигателя

Расчет номинального и пускового тока электродвигателя по мощности можно произвести с помощью нашего онлайн калькулятора:

Расчет тока трехфазного электродвигателя

Расчет номинального тока двигателя производится по следующей формуле:

Iном=P/√3Ucosφη

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателя либо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • cosφ Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

Расчет пускового тока электродвигателя производится по формуле:

Iпуск=Iном*K

  • К — Кратность пускового тока, данная величина берется из паспорта электродвигателя, либо из каталожных данных (в приведенном выше онлайн калькуляторе кратность пускового тока определяется приблизительно исходя из прочих указанных характеристик электродвигателя).

Как рассчитать трехфазную сеть

В качестве примера можно взять некие производственные площади с установленным оборудованием и по этим исходным данным делать расчет мощности трехфазного тока.

В каждом станке используется электродвигатель. Их общая мощность Ру1 составляет 50 кВт, с учетом активной мощности. Кроме того, в помещении установлены осветительные приборы общей мощностью (Ру2) – 3 кВт. Символ Ру обозначает величину установленной суммарной мощности для конкретных групп потребителей. Работа оборудования осуществляется от трехфазной сети с 4 проводами и номинальным напряжением 380 В.

Кроме того, при расчетах учитывается коэффициент спроса Кс, действующий в режиме максимальной нагрузки. Он учитывает наивысшее количество включений потребителей данной группы. Для электродвигателей Кс1 берется с учетом величины их загруженности и составляет 0,35. Для приборов освещения Кс2 составляет 0,9. Все потребители выравниваются усредненным коэффициентом мощности cos φ = 0,75.

Расчеты начинаются с определения силовой нагрузки Р1 = 0,35 х 50 = 17,5 кВт. Далее рассчитывается осветительная нагрузка Р2 = 0,9 х 3 = 2,7 кВт. Таким образом, величина полной расчетной нагрузки составит Р = Р1 + Р2 = 17,5 + 2,7 = 20,2 кВт.

Для определения и расчета тока используется формула I = (1000 x P)/(1,73 x Uн x cos φ), в которой Р является расчетной мощностью потребителей, Uн – номинальным напряжением 380 вольт, cos φ – коэффициентом мощности.

Подставив нужные значения, находим значение силы и мощности по току: I = (1000 x 20,2)/(1,73 x 380 x 0,75) = 41 А. Полученный результат дает возможность узнать, сможет ли сеть обеспечить нормальную работу потребителей.

Расчет коэффициента мощности электродвигателя

Онлайн расчет коэффициента мощности (cosφ) электродвигателя

Расчет коэффициента мощности трехфазного электродвигателя

Расчет cosφ (косинуса фи) двигателя производится по следующей формуле:

cosφ=P/√3UIη

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателя либо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствииопределяется расчетным путем);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

Расчёты основных параметров асинхронного электродвигателя

Активная мощность тратится на выполнение полезной работы и создание тепла. Обозначается буквой «P», измеряется в W и вычисляется:

P=I*U*cosφ.

Реактивная мощность создаётся колебаниями энергии электрического поля. Она обуславливает способность деталей реактивной машины сохранять и излучать электромагнитную энергию. Речь идёт о токе, который заряжает конденсатор или создает магнитное поле вокруг витков обмотки катушки. Обозначается буквой «Q», измеряется в Var и рассчитывается:

Q=I*U*sinφ.

Полная мощность «S» представляется математической комбинацией по формуле теоремы Пифагора: S*S = Q*Q + P*P. Она измеряется в V*A и вычисляется:

S = P / cosφ = √(P 2 + Q 2 )=I*U.

Реактивную мощность трехфазного асинхронного двигателя можно представить суммой двух составляющих: индуктивной и емкостной.

Читать еще:  Вибрация двигателя на холостых мазда мпв

Расчет КПД электродвигателя

Онлайн расчет КПД (коэффициента полезного действия) электродвигателя

Расчет КПД трехфазного электродвигателя

Расчет коэффициента полезного действия электродвигателя производится по следующей формуле:

η=P/√3UIcosφ

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателя либо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствииопределяется расчетным путем);
  • cosφ Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);

Оказались ли полезны для Вас данные онлайн калькуляторы? Или может быть у Вас остались вопросы? Напишите нам в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Особенности трехфазной сети

Время на чтение:

В подавляющем большинстве случаев в домах и квартирах используется трехфазная сеть. Однако часто применяются приборы, которым необходимо однофазное питание. Чтобы лучше разбираться в особенностях использования трехфазной сети, нужно понимать, как она работает. В статье подробно рассмотрено, как правильно определить ее мощность и каким образом это можно использовать.

Что такое трехфазная сеть в электричестве

Многофазная электрическая сеть переменного тока была создана благодаря американскому ученому Н. Тесле. В России ученый М. Доливо-Добровольский разработал и содействовал повсеместному внедрению трехфазной электросети.

Соединение источника и потребителей

Подаются три фазы переменного тока, которые равны по амплитуде и сдвинуты друг относительно друга на 120°. Фазы могут быть соединены между собой несколькими способами. Самыми распространенными из них являются «звезда» и «треугольник».

В первом случае у них имеется один общий провод. При таком варианте использования появляется возможность подавать линейное или фазовое напряжение. В квартире первое равно 380 В, второе — 220 В. Общий провод обычно соединен с землей, хотя существуют схемы подключения, в которых это не так.

К сведению! При подключении «треугольником» каждый выход фазы соединен с одним выходом другой фазы.

Свойства трехфазной сети

Использование трехфазного электропитания завоевало широкую популярность по следующим причинам:

  • таким способом минимизируются потери при передаче электроэнергии на большие расстояния;
  • трехфазные схемы требуют для реализации меньшего количества деталей и материалов по сравнению с однофазными;
  • есть возможность обеспечить в сети питание 380 В или 220 В.

Обратите внимание! Трехфазное напряжение часто используется для питания асинхронных двигателей, некоторых теплонагревательных приборов, для работы мощных устройств.

Какая сила тока трехфазной сети

На практике часто мощность электроприбора является известной величиной. Поскольку в большинстве случаев для питания используется напряжение 220 В, то имеются все необходимые данные для расчета силы тока. Эта величина важна, чтобы сравнить ее с предельно допустимой для используемых проводов, розеток и удлинителей.

Важно! Слишком сильный ток может вызвать перегорание предохранителей или порчу используемого удлинителя.

Для определения силы тока можно воспользоваться формулой мощности: P = кв. корень(3) * U(l) * I(l) * cos(«фи«).

Здесь можно использовать известные данные:

  • P — мощность электроприбора, известная из его инструкции по эксплуатации;
  • U(l). В большинстве случаев речь идет о напряжении 220 В (для устройств с трехфазным питанием эта величина будет равна 380 В).

Значение и формула для cos («фи») обычно точно неизвестны. Их берут из технического паспорта прибора или обращаются за этой информацией к справочникам. Как правило, для определенных типов приборов такая величина известна. Например, она близка к 1 у нагревательных приборов, а у электродвигателей равна 0,7-0,9.

Таким образом на основе приведенной формулы можно посчитать силу тока на основании известных данных.

Прибор для измерения мощности — ваттметр

Какая стандартная потребляемая ее мощность

Чтобы рассчитать электрическую мощность, потребляемую квартирой или частным домом, нужно учесть потребление энергии всеми используемыми электроприборами. Это удобно делать в два этапа:

  1. Рассмотреть все те приборы, которым необходимо питание, использующее три фазы.
  2. Просуммировать потребляемую мощность однофазных устройств.

Искомые значения можно взять либо из техпаспорта электроприбора, либо из технического справочника. При необходимости эту величину можно рассчитывать на основе сделанных измерений. В реальной жизни устройства практически никогда не включаются одновременно.

Обратите внимание! Знание предельной величины потребляемой энергии позволит правильно организовать электроснабжение дома или квартиры.

На основе полученных данных можно, используя формулы мощности, вычислить, какова предельно допустимая сила тока в трехфазной сети, которую должна выдерживать электропроводка. Это позволит правильно подобрать предохранители и используемые во внутренней электросети провода.

Принцип действия трехфазного генератора

Как правильно рассчитать мощность трехфазной сети

Если трехфазная сеть использует соединение «треугольник», то потребители могут получать однофазное напряжение фазное или линейное. При этом оно будет иметь разную величину: первое будет меньше второго примерно в 1,71 раза (точное значение равно квадратному корню из 3). Силу тока в первом и втором случаях легко рассчитать — будет одинаковой.

К сведению! Если используется вариант соединения «треугольником», то линейное и фазовое напряжения будут равны. Однако фазовый ток будет меньше линейного в 1,71 раза.

Далее рассказано, как рассчитать мощность трехфазной сети. Для этого необходимо просуммировать мощности всех трех фаз. В качестве примера соединение «треугольником». В этом случае для каждой фазы эта характеристика определяется по следующей формуле: P1 = U(f) * I(f) * cos(«фи«).

В формуле расчета мощности трехфазной сети использованы такие обозначения:

  • P1 — мощность каждой из трех фаз;
  • U (f) — фазовое напряжение;
  • I (f) — фазовая сила тока;
  • «фи» — угол, определяемый соотношением активной и реактивной мощности.

Мощность, выделяющаяся на нагрузке, включает в себя активную и реактивную компоненты. Между ними существует сдвиг фаз «фи». Его смысл состоит в том, что при помощи указанного коэффициента определяется доля реактивной мощности в ее суммарной величине.

Чтобы определить мощность трехфазной сети, нужно просуммировать мощность всех трех фаз. Формула выглядит следующим образом: P = 3 * (U (f) * I(f) * cos(«фи»)). P означает искомую величину. Эту величину при расчете можно определить с помощью линейных величин силы тока и напряжения. Поскольку U(f) = U(l) / кв. корень(3), а I(f) = I(l), то мощность можно будет вычислять таким образом.

P = 3 * (U(f) * I(f) * cos(«фи»)) = 3 * (U(l) * I(l) * cos(«фи») / кв. корень(3)) = кв. корень(3) * U(l) * I(l) * cos(«фи«).

При подключении с помощью схемы «треугольник» вычисления выполняются аналогичным образом. При расчете активной мощности в трехфазной сети нужно учитывать, что фазовое и линейное напряжения будут равны, но фазовая сила тока будет в кв. корень (3) меньше линейной.

Обратите внимание! После выполнения преобразований формула мощности трехфазного тока будет такой же, как и для соединения «звездой».

Использование трехфазных сетей имеет свои важные преимущества и является широко распространенным. Чтобы грамотно их эксплуатировать, необходимо знать характеристики и формулы для расчета напряжения.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector