2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Чем обеспечить реверс двигателя

Реверс твердотельными реле + схема коммутации электродвигателей

Главная страница » Реверс твердотельными реле + схема коммутации электродвигателей

Некоторые виды моторной нагрузки требуют применения электрических схем, которыми обеспечивается реверс движения ротора электродвигателя. Для такой практики характерным является не просто многократный запуск и останов мотора, но также необходимо менять — реверсировать направление хода вала ротора. То есть актуальным становится управление электромотором в несколько усложнённом варианте. Современными схемами управления электродвигателями применяется реверс твердотельными реле, что видится удобным и практичным. Рассмотрим такие варианты.

Реверс электродвигателя + принцип организации рабочей схемы

На картинке ниже показана классическая электрическая схема коммутации (в том числе реверс) трёхфазного электродвигателя через контактор. Здесь, если катушка любого из контакторов находится под напряжением, три фазы сети переменного тока поступают на обмотки статора двигателя через замкнутые линейные цепи контактора.

Так обеспечивается вращение ротора электромотора в одном направлении. Будучи в таком состоянии, ротор продолжает вращаться с постоянной скоростью и направлением до момента размыкания коммутационных линий контактора (съёма напряжения с катушки).

Традиционная схема коммутации электромотора (включая реверс): К1…К3 – кнопки управления (откл, вкл, реверс); АВ – автоматический выключатель сети; КН1…КН2 – контакторы; ТР – тепловое реле; ТРМ – терминал подключения мотора; Э1 — электромотор

Если перед повторным включением мотора поменять подключения любых двух фаз питающей линии переменного тока на контакторе (например, подключить фазу L1 на клемму № 2, фазу L2 на клемму № 1), ротор электродвигателя получит обратный (реверсный) вращательный момент.

Конечно, физически реверсировать электрические соединения на контакторе каждый раз, когда требуется получить реверс ротора электродвигателя, видится действием непрактичным и неудобным. Следовательно, логично автоматизировать процесс реверса с учётом команд контроллера управления системой, направленных на реверсирование.

Традиционно для этого использовались дискретные компоненты:

  • несколько механических реле,
  • трёхфазный контактор с реверсивным двигателем.

Однако механические решения имеют те же недостатки, что и любое электромеханическое устройство. Наиболее значительным из этих недостатков является ожидаемый срок службы, особенно для применений, где электродвигатель неоднократно включают — выключают для достижения определённого положения.

Реверс твердотельными реле + схемные решения для электродвигателя

Одно из возможных решений на реверсирование электродвигателя, устраняющее проблемы, связанные с механическими контактами, — это использование нескольких однофазных твердотельных реле. Как демонстрируется картинкой ниже, фазный провод L1 сети переменного тока подключен непосредственно на клемму статора двигателя.

Вариант схемного решения организации управления электродвигателем с возможностью функции реверса посредством группы однофазных твердотельных реле: П1…П5 — предохранители; ОТР1…ОТР4 — однофазные твердотельные реле; Э1 — асинхронный электродвигатель

Исходя из той же приведённой схемы, однофазные твердотельное реле ОТР1 и ОТР3 подключают фазы L2 или L3 на вторую клемму статора электродвигателя. Однофазное твердотельное реле ОТР2 и прибор ОТР4 подключают фазы L2 или L3 на третью клемму статора.

Когда приборы ОТР1 и ОТР2 находятся под напряжением, ротор электродвигателя вращается в одном направлении. Для получения реверса приборы ОТР1 и ОТР2 обесточиваются. Вместе с тем, приборы ОТР3 и ОТР4 активируются, эффективно меняя местами фазы L2 и L3 на контактных выводах обмоток статора.

Реверс однофазными релейными приборами — примечания

Важными являются примечания относительно использования нескольких ОТР в случаях реверсирования электродвигателя:

  • Электромоторы для работы реверсом обычно механически более устойчивы из-за требований, предъявляемых к двигателю. Однако электрически неизбежны проблемы, характерные для асинхронных электромоторов простого применения с пуском / остановом.
  • Система, управляющая твердотельными реле, требует создания цепи блокировки на предотвращение одновременного включения «прямого» и «реверсного» реле. Несоблюдение этого требования может привести к межфазному короткому замыканию через реле, что крайне опасно для системы.
  • Твердотельное реле с внутренней защитой от перенапряжения нельзя использовать в системах с реверсом электродвигателя. Внутренний TVS-диод может включать выход прибора, когда тот подвергается электрическому переходному процессу. Результат — межфазное короткое замыкание. Металлооксидный варистор допустимо размещать на выходе каждого прибора для обеспечения защиты от переходных процессов.
  • Пятый прибор может использоваться для переключения третьей фазы электродвигателя, если этого требует применение. Необязательно использовать реле частью цепи блокировки напрямую, но прибор нужно питать одновременно с «прямым» или «реверсным» реле. Так исключается возможность повреждения электродвигателя при подаче напряжения только на две фазы.

Другое (предпочтительное) эффективное решение на реверс асинхронного электродвигателя — трёхфазное твердотельное реле с функцией реверсирования, как часть общей схемы управления.

Реверс твердотельными реле + схема на трёхфазный электродвигатель

Трёхфазное коммутирующее устройство с реверсом двигателя отличается двумя существенными преимуществами по сравнению с методикой применения отдельных однофазных твердотельных реле:

  1. Все четыре однофазных устройства, по сути, содержатся в одном стандартном корпусе ТТР, что минимизирует количество схемных соединений.
  2. Схема защитной блокировки встроена внутрисхемно на трёхфазном твердотельном реле с реверсом.

Как видно на картинке ниже, две из трёх фаз подключены через прибор типа D53RV с функцией реверса двигателя, тогда как третья фаза подключена непосредственно к статору мотора. Когда логический сигнал подается на управляющую клемму «вправо», ТТР переключает фазы L1 и L2 непосредственно на обмотку статора.

Пример организации схемы — реверс твердотельными реле (типа D53RV) асинхронного электродвигателя: П1…П3 – линейные предохранители; МОВ1…4 – металлооксидные защитные варисторы; ТТР1 – твердотельное реле на три фазы типа D53RV (Crydom); Э1 – электромотор асинхронный

Когда же управляющий сигнал снимается с клеммы «вправо» и подаётся на клемму «влево», схемой ТТР переключается соединение фаз L1 и L2, что приводит к реверсу вала ротора электродвигателя. Если логический управляющий сигнал одновременно подаётся на клеммы «вправо» и «влево», ТТР отключится или останется выключенным.

Схема допускает добавление внешних металлооксидных варисторов для обеспечения дополнительной защиты в условиях перенапряжения, если таковые не включены внутрисхемно на реверсивном приборе ТТР.

Однако установка металлооксидных варисторов зависит и от особенностей схемы. Как демонстрируется на картинке выше, твердотельное реле с реверсом имеет четыре отдельные выходные цепи для обеспечения функции реверса хода ротора.

Соответственно, такое схемное построение требует включения четырёх металлооксидных варисторов (независимо, встроены варисторы внутрисхемно в реле с реверсом или нет). Кроме того, по аналогии с другими электрическими цепями, здесь требуются надлежащие предохранители, и соответствующее автоматическое отключение от сети переменного тока на случай аварии.

Видео по теме: полная разборка магнитного пускателя для ремонта

Ниже представлен тематический видеоролик, демонстрирующий как разобрать полностью магнитный пускатель — коммутационный прибор, который традиционно применяется для управления работой электромоторов:

При помощи информации: Crydom

КРАТКИЙ БРИФИНГ

Zetsila — публикации материалов, интересных и полезных для социума. Новости технологий, исследований, экспериментов мирового масштаба. Социальная мультитематическая информация — СМИ .

Применение реверсивного пускателя в схеме управления электродвигателя

​В промышленности и в быту широко используются электродвигатели. При эксплуатации некоторых механизмов необходимо обеспечить вращение вала двигателя в разный направлениях, то есть нужно осуществлять реверс. Для этого используют определённую схему управления и применяют дополнительный магнитный пускатель (контактор) или реверсивный пускатель.

  • Теоретические основы
  • Принцип работы асинхронного двигателя
    • Трехфазная сеть
    • Однофазный режим
  • Машины постоянного тока
  • Плюсы использования магнитных пускателей
  • Техника безопасности

Теоретические основы

Вид схемы реверсивного пуска двигателя зависит от следующих факторов:

  • тип электродвигателя;
  • питающее напряжение;
  • назначение электрооборудования.

Поэтому схемы реверса могут сильно отличаться, но, поняв принципы их построения, вы сможете собрать или отремонтировать любую подобную схему.

Прежде чем разбирать схемы реверса двигателя, нужно определиться с понятиями, которые будут использоваться при описании работы:

  • Нормально разомкнутый (открытый) контакт — это контакт, который без внешнего воздействия находится в разомкнутом состоянии. Под внешним воздействием, прежде всего, понимают подачу напряжения на катушку управления реле или магнитного пускателя. В случае с кнопками коммутация контактов производится механически.
  • Нормально замкнутый (закрытый) контакт — это контакт, который без воздействия внешних сил находится в замкнутом состоянии.
  • Магнитный пускатель — это электромагнитное устройство, имеющее три силовых нормально разомкнутых контакта и несколько вспомогательных контактов. При подаче питающего напряжения на катушку электромагнита, якорь притягивается и все контакты одновременно переключаются. Силовые контакты используются для подключения электродвигателя к сети, а вспомогательные нужны для построения схемы управления, поэтому они могут быть нормально открытыми или закрытыми. После снятия управляющего напряжения, под действием пружин устройство возвращается в исходное состояние.
  • Реверсивный пускатель — это два одинаковых магнитных пускателя, закреплённые на одном основании, с общим корпусом. Предназначен аппарат для реверсирования трёхфазных двигателей, поэтому силовые контакты соединены между собой определённым образом.
  • Тепловое реле — устройство для защиты двигателя от перегрева, вызванного повышенными токами в обмотках.
  • Контактор — коммутирующее устройство во многом аналогичное магнитному пускателю. Но в отличие от него может иметь от двух до четырёх нормально открытых силовых контактов с дугогасительными камерами и предназначен для переключения больших токов.
  • Автоматический выключатель — аппарат для защиты от токов короткого замыкания.

Для того чтобы электродвигатель поменял своё вращение нужно изменить его магнитное поле. Для этого необходимо произвести некоторые переключения, которые зависят от типа электрической машины.

Принцип работы асинхронного двигателя

Работа электродвигателя может осуществляться как в трехфазном, так и однофазном режиме. Принцип действия схем меняется незначительно, однако имеются некоторые дополнения в устройстве питания от однофазной сети.

Трехфазная сеть

Электрическая принципиальная схемя реверсивного пуска трёхфазного электродвигателя с короткозамкнутым ротором выглядит следующим образом (схема представлена на Рис.1)Питание всей схемы осуществляется от трёхфазной сети переменного тока с напряжением 380 В через автомат АВ.

Для того чтобы сделать реверс такой электрической машины (М), нужно изменить чередование двух любых фаз, подключённых к статору. На схеме магнитный пускатель Мп1 отвечает за прямое вращение, а Мп2 — за обратное. На рисунке видно, что при включении Мп1 происходит чередование фаз на статоре А, В, С, а при включении Мп2 — С, В, А, то есть фазы А и С меняются местами, что нам и нужно.

При подаче на схему напряжения, катушки Мп1 и Мп2 обесточены. Их силовые контакты Мп1.3 и Мп2.3 разомкнуты. Электродвигатель не вращается.

При нажатии на кнопку Пуск1, подаётся питание на катушку Мп1, пускатель срабатывает и происходит следующее:

  1. Замыкаются силовые контакты Мп1.3, питающее напряжение подаётся на обмотки статора, двигатель начинает вращаться.
  2. Замыкается нормально разомкнутый вспомогательный контакт Мп1.1. Этот контакт обеспечивает самоблокировку пускателя Мп1. То есть, когда кнопка Пуск1 будет отпущена, катушка Мп1 останется под напряжением благодаря контакту Мп1.1 и пускатель не отключится.
  3. Размыкается нормально закрытый вспомогательный контакт Мп1.2. Этот контакт разрывает цепь управления катушкой Мп2, таким образом, обеспечивается защита от одновременного включения обоих контакторов.

Если возникла необходимость остановить двигатель или произвести реверс, нужно нажать

кнопку Стоп. При этом размыкается цепь питания Мп1, контактор отключается, его контакты возвращаются в первоначальное состояние, показанное на рисунке, электродвигатель останавливается.

Для того чтобы двигатель начал вращаться в обратную сторону, нужно нажать кнопку Пуск2. По аналогии с Мп1, сработают контакты Мп2.3, Мп2.1, Мп2.2, произойдёт переключение фаз на обмотке статора и двигатель начнёт вращаться в противоположном направлении.

Питание схемы управления осуществляется от двух фазовых проводов. При таком включении должны быть использованы контакторы с катушками на 380 В. Предохранители Пр1 и Пр2 обеспечивают защиту от токов короткого замыкания. Кроме того, извлечение этих предохранителей позволяет полностью обесточить все элементы управления и избежать риска получения электротравм при обслуживании и ремонте.

Защиту электрической машины от перегрузок обеспечивает тепловое реле РТ. При протекании повышенного тока в любой из трёх обмоток статора происходит нагрев биметаллической пластины РТ, в результате чего она изгибается. При определённом токе пластина нагревается настолько, что её изгиб вызывает срабатывание теплового реле, из-за чего оно размыкает свой нормально закрытый контакт РТ в схеме управления катушками Мп1 и Мп2 и двигатель отключается от сети.

Время срабатывания зависит от величины тока: чем выше ток, тем меньше время срабатывания. Благодаря тому, что РТ действует с некоторой задержкой, пусковые токи, которые могут в 7-10 раз превышать номинальные, не успевают спровоцировать срабатывание защиты.

В зависимости от типа устройства и настроек после срабатывания теплового реле возможны два варианта возвращения схемы в рабочее состояние:

  • Автоматический — после остывания чувствительного элемента реле возвращается в нормальное состояние и двигатель можно запустить кнопкой Пуск.
  • Ручной — нужно нажать специальный флажок на корпусе РТ, после этого контакт замкнётся и схема будет готова к запуску.

Рассмотренная схема реверса трехфазного двигателя может видоизменяться в зависимости от условий и потребностей. Например, питание схемы управления можно осуществлять от сети 12 В, в этом случае все элементы управления будут находиться под безопасным напряжением и такую установку можно без риска использовать при высокой влажности.

Реверс двигателя можно осуществлять только в том случае, когда двигатель полностью неподвижен, иначе пусковые токи возрастут в несколько раз, что приведёт к срабатыванию защиты. Для того чтобы контролировать выполнение этого условия, в схему управления могут быть добавлены реле времени, контакты которых подключаются последовательно к МП2.2 и Мп1.2. Благодаря этому, после нажатия кнопки Стоп двигатель можно будет запустить в противоположном направлении только по истечении несколько секунд, которые необходимы для полной остановки механизма.

Однофазный режим

Для того чтобы трёхфазный асинхронный двигатель с короткозамкнутым ротором работал от однофазной сети 220 В, используется схема подключения с пусковым и рабочим конденсаторами.

От обмотки статора электродвигателя отходит три провода. Два провода подключаются напрямую к фазному и нулевому проводам, а третий соединяется с одной из питающих жил через конденсатор. В этом случае направление вращения зависит от того, к какому из питающих проводников подключён конденсатор.

Если требуется превратить такую схему подключения в реверсивную, её нужно дополнить тумблером, который будет переключать ёмкость с одного провода питания на другой.

Машины постоянного тока

Реверсивный пуск двигателя постоянного тока можно осуществить изменением полярности подключения обмотки якоря или обмотки возбуждения. В зависимости от того, как эти две обмотки соединены между собой, двигатели постоянного тока имеют следующие типы возбуждения:

  • независимое — обмотки возбуждения и якоря запитывают от различных источников;
  • последовательное;
  • параллельное;
  • смешанное.

Двигатели постоянного тока могут уйти вразнос — режим работы машины, при котором обороты увеличиваются настолько, что это приводит к механическому повреждению.

В случае применения коллекторного двигателя с параллельным или независимым возбуждением такой режим может возникнуть при обрыве обмотки возбуждения. Поэтому схема подключения реверсивного двигателя в этом случае строится таким образом, чтобы осуществлялось переключение обмотки якоря, а обмотка возбуждения должна быть напрямую подключена к источнику питания. То есть недопустимо цепь возбуждения подключать через какие-либо контакты или предохранители.

В остальном схема управления отличается от реверсивного подключения трехфазного двигателя только тем, что происходит переключение двух питающих проводов постоянного тока, вместо трёх фаз переменного.

Плюсы использования магнитных пускателей

Основным элементом в реверсивных схемах подключения электродвигателя является магнитный пускатель. Применение этих аппаратов позволяет решить ряд задач:

  • Одновременное подключение трёх фаз.
  • Осуществление коммутации больших токов малыми сигналами. Некоторые аппараты могут коммутировать токи порядка сотен ампер, а ток необходимый для питания катушки редко превышает один ампер.
  • Дистанционный запуск. Благодаря конструкции пускателя и малым токам срабатывания, кнопки управления могут находиться на расстоянии нескольких сотен метров от электродвигателя, что, в свою очередь, обеспечивает не только удобство эксплуатации, но и безопасность оператора.
  • Нулевая защита. Если в процессе работы отключится напряжение, например, из-за срабатывания токовой защиты, то после возобновления электроснабжения, механизм начнёт работать самопроизвольно, что может привести не только к порче оборудования, но и к человеческим жертвам. Применение контактора исключает такую вероятность, так как после обесточивания он отключится и будет сохранять своё состояние до тех пор, пока оператор не нажмёт кнопку запуска.
  • Универсальность. Катушки для определённого типа пускателей имеют одинаковые характеристики и конструкцию, но напряжение срабатывания может быть разным. Благодаря этому, установив соответствующую катушку, контактор можно использовать в различных сетях. Об этой особенности следует помнить при замене одного пускателя на другой, так как внешне совершенно одинаковые устройства, могут иметь разное рабочее напряжение.

Техника безопасности

При монтаже, наладке и ремонте необходимо строго соблюдать правила техники безопасности.

В случае работы со схемой управления электродвигателями для полного отключения нужно обесточить силовую часть и цепи управления. Некоторые электродвигатели могут получать питание от двух независимых источников питания, поэтому необходимо обязательно изучить схему подключения. Произведите необходимые отключения и проверьте индикатором отсутствие напряжения не только на силовых, но и на вспомогательных контактах.

Если в схеме установлены конденсаторы, после отключения питания следует дать им время для разрядки, прежде чем касаться токопроводящих частей.

Ракетный двигатель с реверсом тяги

Владельцы патента RU 2362898:

Изобретения относится к ракетной технике и может быть использовано при проектировании твердотопливных двигателей с обнулением или реверсом тяги, например противоштопорных ракет для испытаний самолетов. Ракетный двигатель с реверсом тяги содержит камеру сгорания с соосно расположенными и противоположно направленными соплами и перепускное устройство. Перепускное устройство выполнено в виде неподвижного стакана с окнами на боковой поверхности и втулки, установленной внутри стакана с возможностью осевого перемещения. Стакан и втулка зафиксированы с помощью штифта и имеют каждый два ответных уступа на контактирующих цилиндрических поверхностях, одна пара которых образует герметичную полость, которая сообщена с полостью пиропатрона, другая расположена вокруг окон. Штифт установлен в герметичной полости, а площадь его поперечного сечения определяют исходя из соотношения защищаемого настоящим изобретением. Изобретение позволяет обеспечить надежную работу двигателя как при прямой тяге, так и при ее реверсе. 1 з.п. ф-лы, 10 ил.

Изобретение относится к ракетной технике и может быть использовано при проектировании твердотопливных двигателей с обнулением или реверсом тяги, например противоштопорных ракет для испытаний самолетов. Противоштопорные ракеты устанавливаются на внешних пилонах под крылом самолета (см. фиг.1). Управление ракетами производится летчиком с помощью специального пульта. Конструкция противоштопорной ракеты должна, во-первых, позволять создавать реактивную тягу в любом, одном из двух направлений, что необходимо для вывода самолета из правого или левого вращения в штопоре, если самолет не выходит из штопора при помощи аэродинамических рулей, во-вторых, в нужное время обнулять тягу ракеты путем создания противотяги. Схемы двигателей с реверсом тяги приведены в патенте России №2091600, кл. F02K 7/18. В них на камере сгорания соосно в противоположных направлениях выполняются сопла. Истечение газового потока в прямом и (или) обратном направлении обеспечивается осевым перемещением тел вращения, перекрывающих или открывающих доступ газа в то или иное сопло (полость). При этом очевидно, что двигатели с реверсом тяги должны иметь фиксирующий элемент или механизм, позволяющий перепускному устройству находиться в нужном положении. В известном устройстве, приведенном в патенте Великобритании №2283537 фиг.3, противоположно расположенные 4 сопла позволяют изменить вектор тяги твердотопливного двигателя (системы) в широком диапазоне с достаточно высокой точностью. Регулирование вектора тяги осуществляется путем перемещения центрального тела в критическом сечении сопла. Перемещаясь, центральное тело изменяет проходное сечение сопла. К особенностям такой конструкции можно отнести:

— необходимость применения достаточно сложных и массивных приводов центрального тела (перепускного устройства);

— необходимость применения высоконадежных систем управления и контроля работы исполнительных органов. Применение приведенного выше эффективного, многофункционального устройства управления вектором тяги вполне оправдано в некоторых ракетных двигателях твердого топлива (РДТТ). Однако в двигателях с более простым регулированием вектора тяги, например, созданием противотяги, применение известного устройства значительно усложняет конструкцию, снижает ее надежность, а также увеличивает массу двигателя. Задачей настоящего изобретения является создание РДТТ с использованием простых и надежных перепускных устройств.

Поставленная задача достигается тем, что в ракетном двигателе с реверсом тяги, содержащем камеру сгорания с соосно расположенными и противоположно направленными соплами, перепускное устройство, выполненное в виде неподвижного стакана с окнами на боковой поверхности и втулки, установленной внутри стакана с возможностью осевого перемещения, стакан и втулка зафиксированы с помощью штифта, имеют каждый два ответных уступа на контактирующих цилиндрических поверхностях, одна пара которых образует герметичную полость, которая сообщена с полостью пиропатрона, другая расположена вокруг окон, причем штифт установлен в герметичной полости и площадь его поперечного сечения определяют исходя из соотношения

Pк·S1 Изобретение относится к области авиационной и ракетной техники и может быть использовано в управляемых летательных аппаратах. .

Реверс (авиация)

Реверс — устройство для направления части воздушной или реактивной струи по направлению движения самолёта и создания таким образом обратной тяги. Кроме того, реверсом называется применяемый режим работы авиационного двигателя, задействующий реверсивное устройство.

Реверс применяется в основном на пробеге, после посадки, или для аварийного торможения при прерванном взлёте. Реже — на рулении, для движения самолёта задним ходом без помощи буксировщика. Небольшое число самолётов допускают включение реверса в воздухе. Наиболее широко реверс применяется в коммерческой и транспортной авиации. Характерный шум можно часто услышать при пробеге самолёта по ВПП после посадки.

Реверс применяют совместно с основной (колёсной) тормозной системой самолёта. Его применение позволяет снизить нагрузку на основную тормозную систему самолёта и сократить тормозную дистанцию, особенно при малом коэффициенте сцепления колёс с ВПП, а также в начале пробега, когда остаточная подъёмная сила крыла уменьшает нагрузку на колёса, снижая эффективность тормозов. Вклад реверсивной тяги в общее тормозное усилие может сильно различаться для разных моделей самолётов.

Содержание

  • 1 Реверс реактивного двигателя
    • 1.1 Ковшовые створки
    • 1.2 Профилированные решётки
    • 1.3 Ограничения
  • 2 Реверс двигателя с воздушным винтом
    • 2.1 История
  • 3 Самолёты без реверсивного устройства
  • 4 Использование реверса в воздухе
  • 5 См. также
  • 6 Примечания
  • 7 Ссылки

Реверс реактивного двигателя [ править | править код ]

Реверс реализуется путём отклонения части или всей струи, исходящей из двигателя, при помощи разнообразных затворок. В разных двигателях реверсивное устройство реализовано различным способом. Специальные затворки могут перекрывать струю, создаваемую только внешним контуром турбореактивного двигателя (например, на A320), или струи обоих контуров (например, на Ту-154М).

В зависимости от конструктивных особенностей самолёта реверсом могут быть оснащены как все двигатели, так и их часть. Например, на трёхдвигательном Ту-154 реверсивным устройством оснащены только крайние двигатели, а на Як-40 — только средний.

Ковшовые створки [ править | править код ]

Способ, в котором для перенаправления воздушного потока используются специальные створки определённого вида, так называемые «ковшовые». Таких створок на двигателях как минимум две (Ту-154М) или более (Boeing 737) и внешне они напоминают ковши. Например в двигателе невысокой степени двухконтурности с перекрытием всего потока, например Д-30КУ-154 (в самолётеТу-154М). В двигателе высокой степени двухконтурности, например CFM56-5В (в самолёте А320) с перекрытием холодной части потока и с сохранением прямого течения в горячей части потока (сопла).

Профилированные решётки [ править | править код ]

Способ, в котором в задней части двигателя и, возможно, сопла двигателя, выполнены специальные профилированные решётки. Когда двигатель работает на прямой тяге, створки перенаправляют проход выходящих газов в решётки. Такая конструкция применяется например в двигателях невысокой степени двухконтурности с перекрытием всего потока, НК-8-2(У) (в самолёте Ту-154) или Pratt & Whitney JT8D (в самолёте Boeing 727). В двигателе высокой степени двухконтурности, например Д-436 (в самолёте Ан-148) с перекрытием холодной части потока и с сохранением прямого течения в горячей части потока (сопла).

Ограничения [ править | править код ]

К недостаткам реверсивной системы можно отнести неприятности, связанные с его применением на малых скоростях (приблизительно [1] . При высокой скорости движения самолёта поднятый мусор помех не создает, поскольку не успевает подняться до высоты воздухозаборника к моменту его приближения.

На самолёте Ил-76 реверсивное устройство имеют все 4 двигателя, однако на практике реверс внутренних (2-го и 3-го) двигателей стараются не использовать, так как возможно повреждение обшивки фюзеляжа.

Реверс двигателя с воздушным винтом [ править | править код ]

Реверс у винтовых самолётов реализуется путём поворота лопастей винта (изменяется угол атаки лопастей с положительного на отрицательный) при неизменном направлении вращения. Таким образом винт начинает создавать обратную тягу. Такой тип реверсивного устройства может применяться как на самолётах с поршневым двигателем, так и на турбовинтовых самолётах, в том числе и одномоторных. Реверс зачастую предусматривается на гидросамолётах и амфибиях, так как предоставляет значительное удобство при рулении на воде.

История [ править | править код ]

Первое применение реверса тяги на винтовых самолётах можно отнести к 1930-м годам. Так, реверсом были оборудованы пассажирские самолёты Боинг 247 и Дуглас DC-2.

Самолёты без реверсивного устройства [ править | править код ]

Большое количество самолётов не нуждается в реверсе, или реверс сложно реализовать технически. Так например, в связи с особенностями механизации крыла и чрезвычайно эффективными воздушными тормозами в хвосте BAe 146—200 не требуется включать реверс при приземлении. Соответственно, все четыре двигателя не работают в режиме реверса. По этой же причине в реверсивном устройстве не нуждается самолёт Як-42. В то же время многие самолёты с форсажными камерами (военного назначения) не имеют реверса, в связи с чем их послепосадочный пробег велик. Данное обстоятельство вынуждает строить ВПП большей длины, в конце ВПП устанавливать аварийные устройства торможения, а на сами самолёты устанавливать высокоэффективные колёсные тормоза и тормозные парашюты. Необходимо отметить, что тормоза и пневматики таких самолётов подвержены большому износу и требуют частой замены, а в случае применения парашютов требуется организация дополнительных служб по техническому обеспечению и обслуживанию ТП.

Использование реверса в воздухе [ править | править код ]

Некоторые самолёты (как винтовые, так и реактивные, военные и гражданские) допускают возможность включения реверса тяги в воздухе, при этом его использование зависит от конкретного типа воздушного судна. В ряде случаев реверс включается непосредственно перед касанием полосы; в других случаях — на снижении, что позволяет снизить скорость торможением (при подходе по крутой глиссаде) или избежать превышения допустимых скоростей при пикировании (последнее применимо к военным самолётам); для выполнения боевых маневров; для быстрого экстренного снижения.

Так, в турбовинтовом авиалайнере ATR 72 реверс может быть использован в полёте (при снятии пилотом предохранительной пломбы); турбореактивный лайнер «Трайдент» также допускает реверс в воздухе для быстрого снижения с вертикальной скоростью до 3 км/мин (хотя эта возможность редко использовалась на практике); с той же целью мог быть включен реверс двух внутренних двигателей сверхзвукового лайнера «Конкорд» (только на дозвуковой скорости и при высоте ниже 10 км). Военно-транспортный самолёт C-17A также допускает включение реверса всех четырёх двигателей в воздухе для быстрого снижения (до 4600 м/мин). Истребитель Сааб 37 «Вигген» также располагал возможностью реверса в полёте для сокращения посадочной дистанции. Одномоторный турбовинтовой самолёт Pilatus PC-6 также может использовать реверс в воздухе при заходе по крутой глиссаде на короткие посадочные площадки.

Для примера использования реверса тяги в воздухе (непосредственно перед касанием полосы) можно привести выдержку из руководства по лётной эксплуатации самолёта Як-40:

на высоте 6-4 м уменьшить режим работающим боковым двигателям до малого газа и начать выравнивание самолёта, дав команду: Реверс.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector