0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Бесконтактный двигатель постоянного тока схема

Бесконтактные двигатели (стр. 1 из 2)

2. Основная часть

2.1 Характерные особенности бесконтактных двигателей

2.2 Конструкция бесконтактного двигателя

2.3 Схема электромагнитной системы линейного бесконтактного двигателя

4. Список использованной литературы

В начале 60-х г. были разработаны первые бесконтактные электродвигатели постоянного тока типа БП-203, БП-251 и БПС-202. В первом космическом скафандре в кислородном нагнетателе был установлен бесконтактный электродвигатель БПК-401.

За прошедшие 40 лет разработаны 4 поколения бесконтактных электродвигателей. Двигатели 4-го поколения серии БК-1 (20 модификаций), БК-2 (6 модификаций) и ДБ (5 модификаций) применяются в приводах вентиляторов и насосов систем жизнеобеспечения, в системах терморегулирования КА и скафандрах космонавтов. Только на орбитальной станции «Мир» установлено более 100 таких электродвигателей.

Для обеспечения большого гарантийного ресурса двигателей в составе КА с длительным сроком активного существования НПП ВНИИЭМ ведет разработку бесконтактных электродвигателей постоянного тока с гидростатическими опорами ротора для насосных агрегатов. НПП ВНИИЭМ также ведет постоянную работу по совершенствованию разработанных изделий, дальнейшему повышению их надежности и долговечности, а также по созданию новых изделий, в наибольшей степени отвечающих требованиям потребителя.

Техническое решение для бесконтактного гидроподвеса вращающегося ротора обеспечивает возможность реализации электрической машины насосного исполнения с практически неограниченным ресурсом, определяемым лишь сроком сохраняемости электротехнических материалов и комплектующих элементов, способных обеспечить гарантийный ресурс двигателя в составе элек-тронасосного агрегата более 100 тыс. часов.

2. Основная часть

2.1 Характерные особенности бесконтактных двигателей

Коллекторные двигатели постоянного тока обладают хорошими регулировочными свойствами и экономичны, но наличие скользящего контакта коллектор – щетки ограничивает область их применения.

В настоящее время в связи с развитием силовой полупроводниковой электроники появились и начали получать все более широкое распространение бесконтактные двигатели постоянного тока. При замене механического коммутатора – коллектора с щетками полупроводниковым коммутатором двигатель постоянного тока становится более надежным и долговечным, создает меньше радиопомех, особенно при высоких частотах вращения, когда очень быстро изнашиваются щетки и значительно увеличиваются искрение и радиопомехи.

В отличие от обычного коллекторного двигателя бесконтактный двигатель постоянного тока обладает рядом характерных особенностей.

1. Силовая обмотка якоря расположена на статоре и состоит из нескольких катушек, сдвинутых относительно друг друга в пространстве. Ротор выполняют в виде постоянного магнита.

2. Положение оси магнитного потока ротора по отношению к осям катушек силовой обмотки статора определяется бесконтактными датчиками (трансформаторными, индукционными, магнитоэлектрическими, фотоэлектрическими).

3. Бесконтактный полупроводниковый коммутатор осуществляет коммутацию катушек силовой обмотки статора по сигналам датчиков положения. При мощности двигателей до 0,5 – 1 кВт в качестве коммутирующих элементов обычно используются транзисторы, при большей мощности – тиристоры.

Эти факторы позволяют при устранении скользящего контакта коллектор–щетки сохранить основную особенность машины постоянного тока, заключающуюся в том, что частота переключения катушек обмотки якоря определяется частотой вращения ротора. Благодаря этому бесконтактный двигатель постоянного тока в основном сохраняет характеристики коллекторного двигателя с независимым возбуждением.

2.2 Конструкция бесконтактного двигателя

Рассмотрим простейшую конструкцию бесконтактного двигателя (рис.1).

В корпусе 1 расположены электромагнитные системы двигателя и датчика положения. Магнитопровод статора двигателя 2 выполнен из электротехнической стали. В его пазах расположена обмотка 3, состоящая из двух обмоток, сдвинутых в пространстве на 90°. Каждая обмотка представляет собой сосредоточенную многовитковую катушку. Ротор 4 с одной парой полюсов изготовлен из постоянного магнита. При подаче постоянного напряжения на обмотку статора по ней проходит ток, который по взаимодействии с магнитным потоком ротора создает вращающий момент.

Роль датчика положения ротора относительно обмотки статора выполняют два магнитоуправляемых диода Д1 и Д2, расположенных на дополнительном кольцевом магнитопроводе 5, и вращающийся ферромагнитный диск 6. Диск имеет немагнитную вставку 7, занимающую половину его толщины на половине окружности. Магнитный поток датчика Фд создается постоянным магнитом 8 с радиальной намагниченностью. Каждый из магнитоуправляемых диодов одну половину оборота вала находится в зоне действия магнитного потока Фд и открыт, а вторую — вне зоны действия магнитного потока Фд и закрыт.

Работа датчиков и полупроводникового коммутатора К (рис.2) согласована при расположении датчиков Д1 и Д2 по осям обмоток статора 1 и 2 и линии симметрии диска СС перпендикулярно оси полюсов ротора. В положении, изображенном на рис.2, a, сигнал, управляющий коммутатором, снимается с датчика Д1, и коммутатор подает на обмотку 1 напряжение указанной на рисунке полярности.

Когда сигнал отсутствует, коммутатор К подает на обмотку 1 напряжение противоположной полярности (рис. 2, б). Аналогично со сдвигом на 90° подключается к коммутатору обмотка 2 по сигналам датчика Д2. При этом изменение коммутатором полярности напряжения на обмотках статора осуществляется в момент перехода оси потока ротора через ось данной обмотки статора. Тем самым обеспечивается изменение направления тока в обмотке статора при подходе оси полюса ротора противоположного знака. Следовательно, сохраняется одно направление вращающего момента эм, создаваемого силами Fэм, в пределах полного оборота ротора, т.е. выполняется роль коллектора электрической машины постоянного тока.

На рис.3 показана схема подключения обмоток двигателя к транзисторам TI и Т8 коммутатора и таблица, определяющая порядок переключения транзисторов по сигналам датчиков Д1 и Д2.

Известно, что электромагнитный момент, действующий на виток с током, помещенный в магнитное поле, пропорционален току витка и магнитному потоку и зависит от угла между осями витка и поля. Зависимость электромагнитного момента от угла поворота ротора для двухобмоточного двигателя, включенного по схеме рис. 3, показана на рис. 4.

На этом рисунке M1 и M2 – моменты взаимодействия раздельно с 1 и 2 обмотками, M1,2 — результирующий момент.

Как видно из графиков M1 и M2, при включении напряжения только на одну обмотку статора ротор двигателя не приходит во вращение, если начальное положение ротора соответствует углу Θ, при котором вращающий момент эм меньше момента сопротивления на валу. Кроме того, существенная пульсация вращающего момента в пределах оборота ротора приводит, соответственно, к нестабильности мгновенной угловой скорости ротора.

При наличии двух (и более) обмоток на статоре уменьшение момента взаимодействия ротора с одной из обмоток компенсируется увеличением момента взаимодействия с другой. Соответственно, обеспечивается достаточно большой пусковой момент при любом угловом положении ротора, снижение пульсации вращающего момента в пределах оборота и нестабильности мгновенной угловой скорости ротора.

Характеристики бесконтактных микродвигателей тем ближе к характеристикам классического двигателя постоянного тока, чем больше число обмоток на статоре. Однако пропорционально числу обмоток увеличивается необходимое число чувствительных элементов датчиков положения и число транзисторов в коммутаторе. Поэтому практически число обмоток нецелесообразно более трех–четырех.

Читать еще:  Двигатель аее порядок работы цилиндров

2.3 Схема электромагнитной системы линейного бесконтактного двигателя

Для повышения стабильности момента и угловой скорости в пределах оборота применяют специальные схемы модуляции тока в обмотках статора.

В настоящее время крупными сериями выпускаются только бесконтактные микродвигатели. Однако наблюдается тенденция роста выпуска бесконтактных двигателей малой мощности, которые могут составить конкуренцию высокомоментным двигателям, используемым в промышленных роботах, приводах подач обрабатывающих центров и т.д. Объясняется это, в частности, тем что сами бесконтактные двигатели имеют меньшие габариты и массу, чем коллекторные, так как у них лучше условия охлаждения – источники тепла только на статоре, и отсутствует такой источник нагрева, как узел трения коллектор–щетки. Правда, бесконтактный двигатель не может работать без полупроводникового коммутатора.

В ряде случаев двигатели постоянного тока целесообразно делать линейными.

На рис.5, а показана схема электромагнитной системы линейного бесконтактного двигателя. Корпус индуктора 1 выполнен из ферромагнитного материала и служит внешним магнитопроводом. В корпусе расположены постоянные магниты 2, создающие поток возбуждения Фв, индуктор является подвижной частью линейного двигателя. Якорь 3 представляет собой диэлектрическую пластину, на поверхности которой методом фотолитографии выполнена печатная схема проводников 4. Якорь является неподвижной частью двигателя. Длина якоря lя больше длины индуктора lи на длину хода индуктора. Проводники якоря объединены в катушки, оси которых сдвинуты по длине якоря. Выводы катушек подсоединены к полупроводниковому коммутатору. На рис. 5, б показана схема кинематического звена поступательного перемещения с линейным двигателем. Якорь 3 прикреплен к неподвижной направляющей 5, а индуктор 1 – к подвижной каретке 6. На направляющей по осям катушек якоря расположены сигнальные элементы, вызывающие срабатывание датчиков положения индуктора относительно якоря, расположенных на каретке.

Бесконтактный двигатель постоянного тока

С целью улучшения свойств двигателей постоянного тока бы­ли созданы двигатели с бесконтактным коммутатором, называе­мые бесконтактными двигателями постоянного тока (БДПТ). От­личие БДПТ от коллекторных двигателей традиционной конструк­ции состоит в том, что у них щеточно-коллекторный узел заменен полупроводниковым коммутатором (инвертором), управляемым сигналами, поступающими с бесконтактного датчика положения ротора. Рабочая обмотка двигателя — обмотка якоря — располо­жена на сердечнике статора, а постоянный магнит — на роторе.

Вал двигателя Д (рис. 30.4, а)механически соединен с датчи­ком положения ротора (ДПР), сигнал от которого поступает в блок коммутатора (БК). Подключение секций обмотки якоря к источнику постоянного тока происходит через элементы блока комму­татора (БК). Назначение ДПР — выдавать управляющий сигнал в блок коммутатора в соответствии с положением полюсов постоян­ного магнита относительно секций обмотки якоря.

рис. 30.4. Бесконтактный двигатель постоянного тока:

— блок-схема, — магнитная система

В качестве датчиков положения ротора применяют чувствительные различные бесконтактные элементы с минимальными разме­рами и потребляемой мощностью и большой кратностью минимального и максимального сигналов, чтобы не вы­зывать нарушений в работе блока ком­мутатора. Чувствительные элементы ДПР должны надежно работать при внешних воздействиях (температура, влажность, вибрации и т. п.), на которые рассчитан двигатель. Такие свойства присущи ряду чувствительных элемен­тов (датчиков): индуктивных, трансфор­маторных, магнитодиодов и т. п. Наибо­лее целесообразно использовать датчики ЭДС Хота (рис. 30.5), представляющие собой тонкую полупроводниковую пла­стину с нанесенными на ней контактны-

ми площадками, к которым припаяны выводы /—2, подключен­ные к источнику напряжения , и выводы 34, с которых сни­мают выходной сигнал . Если в цепи 1—2 проходит ток , а дат­чик находится в магнитном поле, вектор индукции В которого перпендикулярен плоскости пластины датчика, то в датчике наво­дится ЭДС и на выводах 34 появляется напряжение . Значение ЭДС зависит от тока и магнитной индукции В, а полярность — от направления тока в цепи 12 и направления вектора магнитной индукции В.

Рис. 30.5. Датчик ЭДС Холла

Рассмотрим работу бесконтактного двигателя постоянного то­ка, для управления которым применяют датчики Холла и комму­татор, выполненный на транзисторах VТ1VТ4 (рис. 30.6). Четыре обмотки (фазы) двигателя распо­ложены на явно выраженных полюсах шихтованного сердечника якоря (см. рис. 30.4, б). Датчики Холла ДХ1 и ДХ2 уста­новлены в пазах полюсных наконечников двух смежных полюсов. Силовые транзисторы VТ1VТ4 работают в релейном (ключевом) режиме (рис. 30.6). Сигнал на открытие транзистора поступает от соот­ветствующего датчика Холла (датчика положения ротора). Питание датчиков Холла (выводы 12)осуществляется от источника напряжением .

Рис. 30.6. Принципиальная схема БДПТ

Каждая обмотка (фаза) выполнена из двух катушек, расположенных на противолежащих полюсах сердечника статора и соединенных последова­тельно (рис. 30.7). Если по какой-либо из обмоток (фаз) статора про­ходит ток от начала Н1Н4 к концу К1К4, то полюсы сердечника статора приобретают полярность соответственно S и N.

Рис. 30.7. Расположение обмоток фаз на полюсах статора БДПТ

При положении ротора, показанном на рис. 30.6, в зоне маг­нитного полюса N находится датчик ДХ1. При этом на выходе дат­чика появляется сигнал, при котором транзистор VТ2 переходит в открытое состояние. В обмотке (фаза) статора появляется ток , протекающий от Н2 к К2. При этом полюсы статора 2 и 4 приоб­ретают полярность S и N (рис. 30.8, ). В результате взаимодейст­вия магнитных полей статора и ротора (постоянного магнита) появляется электромагнитный момент М, вращающий ротор. После поворота ротора относительно оси полюсов статора 13 на неко­торый угол а против часовой стрелки датчик ДХ2 окажется в зоне магнитного полюса ротора S, при этом по сигналу с датчика ДХ2 включается транзистор VТ3. В фазной катушке возникает ток и полюсы 3 и / приобретают полярность S и N. При этом магнит­ный поток статора Ф создается совместным действием МДС обмо­ток фаз и . Вектор этого потока повернут относительно оси 2—4 на угол 45 0 (рис. 30.8, б). Ротор, продолжая вращение, зани­мает положение по оси полюсов статора 24. При этом датчик ДХ1 попадает в межполюсное пространство ротора, а датчик ДХ2 останется в зоне полюса S ротора. В результате транзистор VТ2 закрывается, транзистор VТЗ останется открытым и магнитный поток Ф, создаваемый МДС обмотки фазы , поворачивается от­носительно оси полюсов 24 еще на 45 0 (рис. 30.8, в). После того как ось вращающегося ротора пересечет ось полюсов статора 24, датчики ДХ1 и ДХ2 окажутся в зоне полюса ротора S, что приведет к включению транзисторов VТЗ и VТ4. Дальнейшую работу эле­ментов схемы БДПТ (рис. 30.8) до завершения вектором потока Ф одного оборота проследим по табл. 30.1 и рис. 30.8, аз.

Читать еще:  Вибрация двигателя при больших оборотах

Рис. 30.8. Магнитное поле статора в четырехполюсном БДПТ

На рис. 30.9 показано устройство рассмотренного БДПТ. Дат­чики Холла 3 размещены в специальных пазах полюсных нако­нечников 1 сердечника статора.

Рис. 30.9. Устройство БДПТ

Постоянный магнит 2 не имеет центрального отверстия для посадки на вал, он закладывается в тонкостенную гильзу и закры­вается привариваемыми фланцами двух полуосей. Такая конст­рукция ротора позволяет избежать выполнения центрального от­верстия в постоянном магните, что часто является причиной брака (трещины, сколы и т. п.). Блок коммутатора (БК) расположен на панелях 5, отделен от двигателя перегородкой 4 и закрыт металли­ческим колпаком 6, через который выведены провода 7 для под­ключения двигателя в сети постоянного тока. Подобная конструк­ция применена в БДПТ полезной мощностью от 1 до 120 Вт.

Позиция на рис. 30.8абвг еж3а
Открыты транзисторыVТ2VТ2, VТЗVТЗVТЗ, VТ4VТ4VТ4, VТ1VТ1VТ1 VТ2VТ2
Ток проходит по фазным катушкам , , , ,
Угол поворота вектора потока статора, град

Изменение направления вращения (реверс) двигателя осуще­ствляется изменением полярности напряжения в токовой цепи датчиков Холла. Изменение полярности напряжения U на входе двигателя недопустимо, так как при этом прекращается работа блока коммутатора.

Коэффициент полезного действия БДПТ по сравнению с кол­лекторными двигателями постоянного тока выше, что объясняется отсутствием щеточно-коллекторного узла, а значит, электрических потерь в щеточном контакте и механических потерь в коллекторе.

К достоинствам БДПТ относятся также высокая надежность и долговечность, что объясняется отсутствием у них щеточно-коллекторного узла, т. е. их бесконтактностью. Двигатели могут работать в условиях широкого диапазона температур окружающей среды, в вакууме, в средах с большой влажностью и т. п., где при­менение коллекторных двигателей недопустимо из-за неработо­способности щеточно-коллекторного узла.

Недостаток БДПТ — повышенная стоимость, обусловленная наличием полупроводникового блока коммутатора, чувствитель­ных элементов (датчиков ЭДС Холла) и постоянного магнита.

studopedia.org — Студопедия.Орг — 2014-2021 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.003 с) .

Бесконтактные двигатели

На рис.5, а показана схема электромагнитной системы линейного бесконтактного двигателя. Корпус индуктора 1 выполнен из ферромагнитного материала и служит внешним

Бесконтактные двигатели

Другие материалы по предмету

2. Основная часть

2.1 Характерные особенности бесконтактных двигателей

2.2 Конструкция бесконтактного двигателя

2.3 Схема электромагнитной системы линейного бесконтактного двигателя

4. Список использованной литературы

В начале 60-х г. были разработаны первые бесконтактные электродвигатели постоянного тока типа БП-203, БП-251 и БПС-202. В первом космическом скафандре в кислородном нагнетателе был установлен бесконтактный электродвигатель БПК-401.

За прошедшие 40 лет разработаны 4 поколения бесконтактных электродвигателей. Двигатели 4-го поколения серии БК-1 (20 модификаций), БК-2 (6 модификаций) и ДБ (5 модификаций) применяются в приводах вентиляторов и насосов систем жизнеобеспечения, в системах терморегулирования КА и скафандрах космонавтов. Только на орбитальной станции «Мир» установлено более 100 таких электродвигателей.

Для обеспечения большого гарантийного ресурса двигателей в составе КА с длительным сроком активного существования НПП ВНИИЭМ ведет разработку бесконтактных электродвигателей постоянного тока с гидростатическими опорами ротора для насосных агрегатов. НПП ВНИИЭМ также ведет постоянную работу по совершенствованию разработанных изделий, дальнейшему повышению их надежности и долговечности, а также по созданию новых изделий, в наибольшей степени отвечающих требованиям потребителя.

Техническое решение для бесконтактного гидроподвеса вращающегося ротора обеспечивает возможность реализации электрической машины насосного исполнения с практически неограниченным ресурсом, определяемым лишь сроком сохраняемости электротехнических материалов и комплектующих элементов, способных обеспечить гарантийный ресурс двигателя в составе элек-тронасосного агрегата более 100 тыс. часов.

2. Основная часть

2.1 Характерные особенности бесконтактных двигателей

Коллекторные двигатели постоянного тока обладают хорошими регулировочными свойствами и экономичны, но наличие скользящего контакта коллектор щетки ограничивает область их применения.

В настоящее время в связи с развитием силовой полупроводниковой электроники появились и начали получать все более широкое распространение бесконтактные двигатели постоянного тока. При замене механического коммутатора коллектора с щетками полупроводниковым коммутатором двигатель постоянного тока становится более надежным и долговечным, создает меньше радиопомех, особенно при высоких частотах вращения, когда очень быстро изнашиваются щетки и значительно увеличиваются искрение и радиопомехи.

В отличие от обычного коллекторного двигателя бесконтактный двигатель постоянного тока обладает рядом характерных особенностей.

1. Силовая обмотка якоря расположена на статоре и состоит из нескольких катушек, сдвинутых относительно друг друга в пространстве. Ротор выполняют в виде постоянного магнита.

2. Положение оси магнитного потока ротора по отношению к осям катушек силовой обмотки статора определяется бесконтактными датчиками (трансформаторными, индукционными, магнитоэлектрическими, фотоэлектрическими).

3. Бесконтактный полупроводниковый коммутатор осуществляет коммутацию катушек силовой обмотки статора по сигналам датчиков положения. При мощности двигателей до 0,5 1 кВт в качестве коммутирующих элементов обычно используются транзисторы, при большей мощности тиристоры.

Эти факторы позволяют при устранении скользящего контакта коллекторщетки сохранить основную особенность машины постоянного тока, заключающуюся в том, что частота переключения катушек обмотки якоря определяется частотой вращения ротора. Благодаря этому бесконтактный двигатель постоянного тока в основном сохраняет характеристики коллекторного двигателя с независимым возбуждением.

2.2 Конструкция бесконтактного двигателя

Рассмотрим простейшую конструкцию бесконтактного двигателя (рис.1).

В корпусе 1 расположены электромагнитные системы двигателя и датчика положения. Магнитопровод статора двигателя 2 выполнен из электротехнической стали. В его пазах расположена обмотка 3, состоящая из двух обмоток, сдвинутых в пространстве на 90°. Каждая обмотка представляет собой сосредоточенную многовитковую катушку. Ротор 4 с одной парой полюсов изготовлен из постоянного магнита. При подаче постоянного напряжения на обмотку статора по ней проходит ток, который по взаимодействии с магнитным потоком ротора создает вращающий момент.

Роль датчика положения ротора относительно обмотки статора выполняют два магнитоуправляемых диода Д1 и Д2, расположенных на дополнительном кольцевом магнитопроводе 5, и вращающийся ферромагнитный диск 6. Диск имеет немагнитную вставку 7, занимающую половину его толщины на половине окружности. Магнитный поток датчика Фд создается постоянным магнитом 8 с радиальной намагниченностью. Каждый из магнитоуправляемых диодов одну половину оборота вала находится в зоне действия магнитного потока Фд и открыт, а вторую — вне зоны действия магнитного потока Фд и закрыт.

Работа датчиков и полупроводникового коммутатора К (рис.2) согласована при расположении датчиков Д1 и Д2 по осям обмоток статора 1 и 2 и линии симметрии диска СС перпендикулярно оси полюсов ротора. В положении, изображенном на рис.2, a, сигнал, управляющий коммутатором, снимается с датчика Д1, и коммутатор подает на обмотку 1 напряжение указанной на рисунке полярности.

Читать еще:  Что быстрее изнашивается в двигателе

Когда сигнал отсутствует, коммутатор К подает на обмотку 1 напряжение противоположной полярности (рис. 2, б). Аналогично со сдвигом на 90° подключается к коммутатору обмотка 2 по сигналам датчика Д2. При этом изменение коммутатором полярности напряжения на обмотках статора осуществляется в момент перехода оси потока ротора через ось данной обмотки статора. Тем самым обеспечивается изменение направления тока в обмотке статора при подходе оси полюса ротора противоположного знака. Следовательно, сохраняется одно направление вращающего момента эм, создаваемого силами Fэм, в пределах полного оборота ротора, т.е. выполняется роль коллектора электрической машины постоянного тока.

На рис.3 показана схема подключения обмоток двигателя к транзисторам TI и Т8 коммутатора и таблица, определяющая порядок переключения транзисторов по сигналам датчиков Д1 и Д2.

Известно, что электромагнитный момент, действующий на виток с током, помещенный в магнитное поле, пропорционален току витка и магнитному потоку и зависит от угла между осями витка и поля. Зависимость электромагнитного момента от угла поворота ротора для двухобмоточного двигателя, включенного по схеме рис. 3, показана на рис. 4.

На этом рисунке M1 и M2 моменты взаимодействия раздельно с 1 и 2 обмотками, M1,2 — результирующий момент.

Как видно из графиков M1 и M2, при включении напряжения только на одну обмотку статора ротор двигателя не приходит во вращение, если начальное положение ротора соответствует углу Θ, при котором вращающий момент эм меньше момента сопротивления на валу. Кроме того, существенная пульсация вращающего момента в пределах оборота ротора приводит, соответственно, к нестабильности мгновенной угловой скорости ротора.

При наличии двух (и более) обмоток на статоре уменьшение момента взаимодействия ротора с одной из обмоток компенсируется увеличением момента взаимодействия с другой. Соответственно, обеспечивается достаточно большой пусковой момент при любом угловом положении ротора, снижение пульсации вращающего момента в пределах оборота и нестабильности мгновенной угловой скорости ротора.

Характеристики бесконтактных микродвигателей тем ближе к характеристикам классического двигателя постоянного тока, чем больше число обмоток на статоре. Однако пропорционально числу обмоток увеличивается необходимое число чувствительных элементов датчиков положения и число транзисторов в коммутаторе. Поэтому практически число обмоток нецелесообразно более трехчетырех.

2.3 Схема электромагнитной системы линейного бесконтактного двигателя

Для повышения стабильности момента и угловой скорости в пределах оборота применяют специальные схемы модуляции тока в обмотках статора.

В настоящее время крупными сериями выпускаются только бесконтактные микродвигатели. Однако наблюдается тенденция роста выпуска бесконтактных двигателей малой мощности, которые могут составить конкуренцию высокомоментным двигателям, используемым в промышленных роботах, приводах подач обрабатывающих центров и т.д. Объясняется это, в частности, тем что сами бесконтактные двигатели имеют меньшие габариты и массу, чем коллекторные, так как у них лучше условия охлаждения источники тепла только на статоре, и отсутствует такой источник нагрева, как узел трения коллекторщетки. Правда, бесконтактный двигатель не может работать без полупроводникового коммутатора.

В ряде случаев двигатели постоянного тока целесообразно делать линейными.

На рис.5, а показана схема электромагнитной системы линейного бесконтактного двигателя. Корпус индуктора 1 выполнен из ферромагнитного материала и служит внешним магнитопроводом. В корпусе расположены постоянные магниты 2, создающие поток возбуждения Фв, индуктор является подвижной частью линейного двигателя. Якорь 3 представляет собой диэлектрическую пластину, на поверхности которой методом фотолитографии выполнена печатная схема проводников 4. Якорь является неподвижной частью двигателя. Длина якоря lя больше длины индуктора lи на длину хода индуктора. Проводники якоря объединены в катушки, оси которых сдвинуты по длине якоря. Выводы катушек подсоединены к полупроводниковому коммутатору. На рис. 5, б показана схема кинематического звена поступательного перемещения с линейным двигателем.

Схема пуска двигателя постоянного тока независимого возбуждения в функции тока

Данная схема реализована при помощи реле максимального тока KА1, КА2 которые срабатывают при пусковом токе I1 и отпадают при минимальном токе I2.

Перед изучением принципа работы схемы — рекомендуется ознакомиться с данным материалом.

Пуск двигателя постоянного тока независимого возбуждения (ДПТ НВ) осуществляется с полностью ведённым резистором в цепи якоря. По мере разгона двигателя — пусковой ток уменьшается до значения I2, при котором токовое реле KA1 отпускает свои контакты, тем самым запитывая контактор КМ2. КМ2 в свою очередь шунтирует первую ступень реостата. Аналогично выводится вторая ступень резистора (КА2 — КМ3).

Для правильной работы схемы необходимо: что бы собственное время срабатывания токовых реле было меньше собственного времени срабатывания контактора!

Сопротивления ступеней резистора выбираются таким образом, чтобы в момент включения двигателя и шунтирования ступеней, ток I1 и момент М1 не превышали допустимых значений.

Принцип работы схемы

Включением автоматического выключателя QF1 напряжение поступает на обмотку возбуждения LM двигателя и катушку реле КА, которое замыкает свой контакт КА. Реле минимального тока КА служит для защиты двигателя от обрыва в цепи возбуждения.

Нажатием кнопки SB1 производится пуск двигателя. Магнитный пускатель КМ1 срабатывает и замыкает контакты — в цепи якоря начинает протекать пусковой ток I1. Под действием тока I1 срабатывает реле максимального тока КА1. Его нормально замкнутый контакт КА1 размыкается, препятствуя срабатыванию КМ2. Двигатель разгоняется по искусственной характеристике 1.

С ростом скорости двигателя пусковой ток уменьшается. При достижении значения I2 — токовое реле КА1 замыкает контакт КА1 в цепи катушки контактора КМ2. КМ2 срабатывает и шунтирует контактом КМ2.1 первую ступень резистора и реле КА1.

Пусковой ток после переключения протекает через КА2 и возрастает до значения I1. Под действием тока I1 токовое реле КА2 срабатывает и размыкает свои контакты в цепи катушки контактора КМ3. Двигатель разгоняется по искусственной характеристике 2.

При достижении частоты вращения n2, пусковой ток уменьшается до значения I2. Реле КА2 отпускает свои контакты и запитывает контактор КМ3. КМ3 срабатывает и полностью шунтирует пусковой резистор. Двигатель выходит на естественную характеристику 3, по которой разгоняется до номинальной частоты. Пуск окончен.

Для работы схемы необходимо, что бы время срабатывания КА1 и КА2 было меньше времени срабатывания контакторов.

Останов двигателя осуществляется нажатием кнопки «Стоп» SB2.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector