5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Асинхронный двигатель как генератор переменного тока

Генератор и двигатель — чем они отличаются

Двигатель

Двигатель предназначен для преобразования электрической энергии в механическую. В промышленном производстве двигатели применяются в качестве приводов на станках и прочих механизмах, являющихся частью технологических процессов. Также двигатели используются в бытовых приборах, к примеру, в стиральной машине.

Электродвигатель постоянного тока

При нахождении в магнитном поле проводника в виде замкнутой рамки, силы, которые приложены к рамке, приведут данный проводник к вращению. В таком случае, речь будет идти о простейшем двигателе.

Как было указано ранее, работа двигателя постоянного тока осуществляется от источников бесперебойного питания, к примеру, от аккумуляторной батареи, блока питания. У двигателя имеется обмотка возбуждения. В зависимости от ее подключения, различают двигатели с независимым и самовозбуждением, которое, в свою очередь, может быть последовательным, параллельным и смешанным.

Подключение двигателя переменного тока производится от электрической сети. Исходя из принципа работы, двигатели подразделяются на синхронные и асинхронные.

Асинхронный двигатель

Главным отличием синхронного двигателя является наличие обмотки на вращающемся роторе, а также имеющийся щеточный механизм, служащий для подведения тока на обмотки. Вращение ротора осуществляется синхронно вращению магнитного поля статора. Отсюда двигатель имеет такое название.

В асинхронном двигателе важным условием является то, что вращение ротора должно быть медленнее вращения магнитного поля. При несоблюдении данного требования наведение электродвижущей силы и возникновение электротока в роторе оказывается невозможным.

Асинхронные двигатели применяются чаще, однако у них имеется один значительный недостаток – без изменения частоты тока невозможно регулирование скорости вращения вала. Данное условие не позволяет достичь вращения с постоянной частотой. Также значительным недостатком является ограничение по максимальной скорости вращения (3000 об./мин.).

Генератор

Проводник, перемещаясь между двумя магнитными полюсами, способствует возникновению электродвижущей силы. Когда проводник замыкают, то при воздействии электродвижущей силы в нем возникает ток. На данном явлении основывается действие электрического генератора.

Генератор переменного тока

Генератор способен вырабатывать электрическую энергию из тепловой или химической энергии. Однако наиболее широкое распространение получили генераторы, преобразующие механическую энергию в электрическую.

Основные составные элементы генератора постоянного тока:

  • Якорь, выступающий в качестве ротора.
  • Статор, на котором располагается катушка возбуждения.
  • Корпус.
  • Магнитные полюса.
  • Коллекторный узел и щетки.

Генераторы постоянного тока используются не так часто. Основные сферы их применения: электрический транспорт, сварочные инверторы, а также ветроустановки.

Генератор постоянного тока

Генератор переменного тока имеет схожую конструкцию с генератором постоянного тока, но отличается строением коллекторного узла и обмотками на роторе.

Схема генератора переменного тока

Так же как и в случае с двигателями, генераторы могут быть синхронными и асинхронными. Разница между данными генераторами заключается в строении ротора. У синхронного генератора катушки индуктивности расположены на роторе, а у асинхронного генератора для расположения обмотки на валу имеются специальные пазы.

Чем отличается генератор от двигателя?

Подводя итог, важно отметить, что функционирование двигателей и генераторов основано на общем принципе электромагнитной индукции. Конструкция данных электрических машин аналогична, однако имеется различие в конфигурации ротора.

Главным же отличием является функциональное назначение генератора и двигателя: двигатель вырабатывает механическую энергию, потребляя электрическую, а генератор наоборот вырабатывает электрическую энергию, потребляя механическую, либо другой вид энергии.

Асинхронный двигатель как генератор переменного тока

Если питание должно поступать и к однофазным, и к трехфазным приборам (инструментам, станкам), то нужен генератор трехфазный. Он способен запитать разную по фазности технику, как на 220 Вольт, так и на 380 Вольт — вот, что значит трехфазный генератор. Таким образом, при отсутствии тока в стационарной сети, вы сможете включать и перфоратор или дрель на 220В и бетономешалку на 380В, но только не одновременно, а поочередно. Трехфазный генератор – необходимое приобретение как для домашнего пользования, так и для производственных площадок.

Самодельный генератор, возможно ли это

Хоть электростанция трехфазная — агрегат весьма сложный, его можно собрать самостоятельно, изучив принцип работы генератора и имея доступные элементы и детали. Для этого используется асинхронный электрический двигатель.

Принцип работы основан на всем знакомой динамо-машине — заставить ротор вращаться принудительно. Как работает трехфазный генератор? На основе асинхронного двигателя. Для того, чтобы этот мотор, не включенный в сеть, заработал в роли источника электричества, нужно передать на его якорь вращательный момент. Крутящий момент возникает от любой механической энергии.

Лучший способ, как сделать трехфазный генератор — задействовать двигатель внутреннего сгорания. Причем, вы можете создать не только бензиновый генератор, а экономный газовый или мощный дизельный. Для подключения к двигателю используют амортизирующую муфту, чтобы ротор вращался не рывками, а плавно.

Даже больше — детально разобравшись, что такое трехфазный генератор, вы поймете, что механическую энергию можно получить не только от ДВС, а от совершенно бесплатных носителей. Это значит, что можно использовать энергию речки или ветра (если природные условия содействуют). В этом случае нужно собрать и установить турбину, ветряную или водяную. Получается отличная возможность сэкономить на оплате электроэнергии, получаемой от стационарной сети.

В некоторых населенных пунктах Украины для вращения ротора используют даже лошадей. Этот способ соорудить электрогенератор своими руками популярен среди определенных религиозных общин, которые принципиально не пользуются стационарным электричеством. Несколько запряженных коней вращают якорь, создавая нужную механическую энергию. Получается дешевая электроэнергия от живой конской силы.

Как работает генератор 380 Вольт собственного изготовления

При вращении ротора, в статоре возникает магнитное поле, формирующее ЭДС. Привод устроен так, что, если подсоединить к концам обмоток конденсатор, то по виткам начинает идти ток. Емкость конденсаторной батареи должна быть выше критического номинала, чтобы генератор был пригоден для активной нагрузки и выдавал симметричные трехфазные вольтажи.

Кроме этого показателя, на мощность электрогенератора влияет и двигатель, создающий крутящий момент, его конструкция и мощность.

Для продуцирования электричества 380 Вольт со стандартной частотой 50 Гц, скорость вращения якоря привода должна поддерживаться на определенном уровне. Магнитные силовые линии возникнут только при условии, что скорость выше асинхронной составляющей на коэффициент скольжения S (равен 2÷10 процентов) и соответствовать уровню синхронной частоты. В противном случае правильной синусоиды тока добиться невозможно, а ее искривление (скачки частоты) недопустимы, если подключаем к электростанции 380 Вольт приборы, оснащенные электрическими двигателями (дрели, перфораторы, болгарки, пилы). Если мотора нет, а только нагревательный ТЭН или лампа накаливания, то значение частоты и синусоида тока не настолько имеют значение.

Существует также вариант использования генераторов на 220 Вольт для оборотов электродвигателя. В этом случае, мы получаем самодельный трехфазный генератор из однофазного. Передача вращательного момента идет на якорь асинхронного трехфазного привода, в результате чего получается трехфазная сеть.

Какой асинхронный двигатель нужен: характеристики ротора и статора

Асинхронный трехфазный привод — основная база для генератора переменного тока. Очень часто такие моторы списываются на предприятиях, поэтому найти его можно за низкую цену или бесплатно. Обязательные условия выбора, какой у него ротор и статор:

  • Ротор у такого движка может быть фазный или короткозамкнутый;
  • Статор — с тремя отдельными медными обмотками. Соединение витков между собой допускается по типу «треугольник» или «звезда».

Устройство и принцип работы такого привода состоит в том, что ротор (якорь) — вращающийся элемент, статор — неподвижный. У них обоих основу составляют изолированные стальные пластины. На этих пластинах расположены пазы, в которых идут витки обмотки.

В статоре выходы витков нужно подсоединить в клеммную коробку и установить перемычки для соединения. Кабель для питания также устанавливают здесь.

К каждой фазе статора подсоединяются идентичные напряжения, смещенные на угол, который составляет примерно треть круга. Эти синхронные подводки отвечают за формирование тока в витках статора.

В роторе подключение зависит от особенностей его строения: фазный или короткозамкнутый.

  1. Фазный ротор. У такого ротора витки обмотки аналогичны, как у статора. Их выходы нужно смонтировать на кольца, которые проводят контакт и соприкасаются со схемой запуска и прижимными щетками. Конструкция получается непростая, с ней нужно повозиться. К тому же нужно постоянно наблюдать за частотой вращения и смотреть, не разомкнулись ли контактные кольца, не отошли ли прижимные щетки. Поэтому лучше выбрать ротор короткозамкнутого типа. Или же сделать короткозамкнутый якорь из фазного ротора. Для этого концы обмотки не подключают к кольцам, а сочетают между собой — коротят.
  2. Короткозамкнутый ротор. Как мы уже сказали, он более удобный для самостоятельного создания генератора, так как, в отличие от синхронного генератора, схема у него простая. Кольца-перемычки своими концами соединены и закорочены, подвижных прижимных щеток-контактов нет. Получается все очень просто и надежно, поэтому именно такой якорь и советуем выбирать для своей самоделки.

На что влияют схемы подключения

Схема трехфазного генератора в плане размещения обмоток на статоре мотора влияет на последующую работу устройства, определяет его технические характеристики.

  • Электросхема соединения «звезда». Это стандартный тип соединения витков и очень популярный. Он самый практичный при подключении конденсаторной батареи. Ее присоединение можно выполнить:
    • К двум обмоткам. В результате такой схемы асинхронные генераторы обеспечивают питание однофазным приборам (причем, двум группам) и трехфазным (одна линия). Клавиши выключателей для рабочего и пускового конденсатора — отдельные.
    • К одной обмотке (по такой же схеме). Получим одну однофазную линию. И одну трехфазную.
  • Схема подключения «треугольник» применяется для переключения обмоток для получения однофазного питания.

На какие характеристики двигателя еще нужно обратить внимание

Для надежной и стабильной работы генератора, сделанного своими руками, важны определенные технические характеристики двигателя. Они указаны на наклейке или же в паспорте (если он есть). Важные моменты, это:

  • Класс защиты (обозначение IP). Чем меньше цифра — тем лучше корпус привода защищен о проникновения пыли и влаги.
  • Мощность.
  • Количество оборотов.
  • Схема сочетания витков обмотки статора.
  • Максимальные нагрузочные токи.
  • Коэффициент полезного действия.
  • Пусковой ток (коэффициент фи).

Все это следует выяснить, а если мотор старый и много лет использованный, то его нужно протестировать вольтметром, амперметром и «прозвонить» на предмет рабочего состояния.

Как просчитать мощность генератора

Чтобы работа самодельной электростанции была стабильной, нужно, чтобы ее номинальный вольтаж и мощность были одинаковыми в режимах генератора и электрического мотора. Перед тем, как выбрать конденсаторную батарею, нужно учесть:

  • Реактивную мощность Q. Она равняется 2n*f*C*U2, где С — емкость конденсатора. Отсюда, нужная нам емкость С будет равна Q/2n*f *U2.
  • Режим работы. Для того, чтобы в режиме холостого хода не возникала перегрузка обмоток и их перегрев, конденсаторные элементы подключают ступенчатым способом, в соответствии с нагрузкой.

Рекомендуемая нами марка пусковых конденсаторов — К78-17, с вольтажом 400 Вольт и выше. Допускаются и аналогичные по характеристикам металлобумажные элементы. Подключение их параллельное.

Батареи на электролите для переменного тока использовать не советуем. На них может работать генератор постоянного тока, а при переменном элементы электролитного конденсатора будут быстро выходить из строя.

Советы и рекомендации по соблюдению безопасности

Трехфазный вольтаж 380 Вольт — это большая опасность поражения человека и его смерти. Поэтому, безопасная эксплуатация самоделки — самое важное требование. Для ее гарантии необходимо выполнить такие условия:

  1. Управление единым электрощитом, в состав которого входят:
    • Измерительные приборы: вольтметр (с максимумом не ниже 500 Вольт), амперметр и частотомер.
    • Выключатели для взаимодействия нагрузок (три клавиши). Одна из них включает питание непосредственно к потребителю, а две других отвечают за подключение конденсаторных элементов.
    • Систему защиты — автовыключатель, который срабатывает при коротком замыкании или перегрузке по мощности. Сюда также входит и устройство защитного отключения, которое должно сработать, если фаза пробьет на корпус.
  2. Надежное заземление к контуру земли.
  3. Система АВР. Для удобства работы и повышения безопасности, также советуем использовать автоматический ввод резерва. Он актуален, если вам нужно резервное питание в качестве генератора. Тогда он сможет самостоятельно включаться при исчезновении тока в стационарной сети, и так же автоматом отключаться при его появлении. АВР создают путем установки перекидного рубильника, который задействует все три фазы.

Советы по эксплуатации: какие трудности могут возникнуть

Частым проблемным явлением работы генератора является перегрузка по мощности. При ней идет интенсивный нагрев обмотки, пробой изоляции. Как следствие — поломка генератора. Возникает из-за:

  • Неверного подбора емкости конденсаторной батареи;
  • Подсоединения большого количества электротехники, суммарная мощность которой превышает номинальную мощность.

О правилах подбора емкости и расчетах мы уже говорили выше. А по проблеме перегруза по мощности в генераторе на три фазы, нужно отметить еще некоторые нюансы при подключении однофазных потребителей:

  • Потребителей с вольтажом 220 Вольт можно подключать только на одну треть общей мощности (к примеру, если ген выдает 6 кВт, то это только для приборов на 380 Вольт, а для однофазных будет только 2 кВт, не больше). Иначе, возникнет перегрузка.
  • Если у вашего генератора две однофазных линии, то вместе мощность по ним будет составлять 2/3 от общего показателя мощности. То есть, 6 кВт — это 4 кВт для однофазных, по 2 кВт на каждую фазу. Причем, при одновременном задействовании фаз, следите, чтоб нагрузка не отличалась от мощности до 10%, иначе возникнет явление «перекос фаз», и ток поступать не будет.

При работе важно следить за показателем частоты переменного тока. Если вы не встроили частотомер на общий электрощит, то на холостом ходу выходной вольтаж выше значения 380 Вольт (или 220 при подключении однофазных) на 4÷6 процентов.

Как сделать генератор переменного тока своими руками из асинхронного электродвигателя

Существующие организации, снабжающие электроэнергией, неоднократно доказывают свою некомпетентность в обслуживании потребителей, и все чаще люди сталкиваются с проблемами подачи электроэнергии. Чаще всего с перебоями в электросети или даже отсутствием электроэнергии сталкиваются владельцы особняков и дач за пределами города. В связи с этим люди запасаются керосиновыми лампами, свечами и бензиновыми генераторами.

Но не всегда есть возможность приобрести себе хороший генератор, и жители вынужденно сталкиваются с вопросом, как сделать генератор своими руками, потратив на это намного меньше, чем на заводской агрегат.

Принцип работы генератора

Пользуясь большим спросом, генератор может быть на базе бензинового или дизельного двигателя. В большинстве случаев главным прибором выработки электроэнергии выступает асинхронный двигатель, с помощью которого производится энергия для рабочей электросети. Бензогенератор с асинхронным двигателем работает с большим КПД, а обороты ротора асинхронного двигателя выше, чем у самого мотора.

Установки с применением асинхронного двигателя применяются не только в бытовых условиях, но и во многих других силовых установках, таких как:

  • Ветровые электростанции.
  • Для работы сварочного аппарата.
  • Для поддержки электроэнергии совместно с небольшой ГЕС.

В большинстве случаев запуск происходит за счет подключения тока, однако, для мини-станций это не совсем рационально, так как генератор должен вырабатывать электроэнергию, а не потреблять. В связи с таким недостатком все чаще производителями предлагаются самовозбуждающиеся устройства, для запуска которых необходимо только последовательное подключение конденсатора.

Благодаря тому, что скорость оборотов ротора асинхронного генератора выше, чем самого мотора, он может производить электроэнергию. В самых обычных моделях генераторов для выработки электричества должно быть не менее 1500 оборотов в минуту.

Превосходство скорости работы ротора при запуске перед синхронной скоростью называют скольжением и вычисляют в процентах от синхронной скорости, но так как статор вращается с большими оборотами, чем ротор, то происходит образование потока заряженных электронов с переменной полярностью.

При запуске подключенный прибор управляет синхронной скоростью и впоследствии — скольжением. При выходе из статора электроны перемещаются по ротору, но активная энергия уже находится в катушках статора.

Принцип работы двигателя заключается в преобразовании механической энергии в электрическую, а для пуска и выработки тока необходим сильный вращательный момент. Наиболее подходящим вариантом, по мнению электриков, является поддержка оптимальной скорости на протяжении всего времени работы генератора.

Преимущества асинхронного генератора

Синхронные и асинхронные генераторы имеют разную конструкцию. Конструкция синхронного более сложная, чувствительность к перепадам напряжения больше, поэтому продуктивность ниже, чем асинхронного. На роторе синхронного мотора размещены магнитные катушки, они усложняют вращение ротора, а ротор асинхронного генератора имеет схожесть с обычным маховиком.

Потеря КПД синхронного генератора из-за конструктивной особенности около 11%, в то время как у асинхронного — потеря до 5%. Поэтому асинхронные устройства более востребованы и в быту, и в промышленности. Нарастание спроса обусловлено не только высоким КПД, но и другими преимуществами:

  • Простая конструкция корпуса, способного защитить от попадания влаги и пыли, что снижает необходимость ежедневного проведения ТО.
  • Устойчивость к перепаду напряжения и наличие выпрямителя, который служит защитой для подключенных электроприборов.
  • Способен питать высокочувствительные приборы, к примеру, сварочные устройства, компьютеры и лампы накалывания.
  • Высокий КПД и минимальная затрата энергии на обогрев самого агрегата.
  • Длительный срок эксплуатации благодаря надежности деталей и их устойчивости к износу при использовании.

Благодаря таким положительным нюансам генератор может эксплуатироваться на протяжении 15 лет, а его конструкция позволяет сделать асинхронный генератор своими руками.

Мотоблок для электрогенератора

Для жителей сел и поселков за городом использование мотоблока для сборки генератора не является новшеством, так как агрегат очень распространен, и многие проводят земельные работы с его помощью, хотя мотоблок, как другая техника, нередко подвергается поломкам.

При больших повреждениях агрегата владельцы покупают новый, но со старым расстаться хочет не каждый, поэтому старые экземпляры могут использоваться для самостоятельного конструирования генератора переменного тока 220 В. Работой двигателя может обеспечиваться оптимальная производительность асинхронного двигателя в пределах вольтажа от 220 до 380. Мощность двигателя нужно выбирать не менее 15 кВт, а частота оборотов вала должна быть от 800 до 1500 об/мин. Такие характеристики необходимы для полного обеспечения электросети жилища. Ведь с маломощным двигателем получить достаточно энергии не выйдет, а создавать генератор для нескольких осветительных приборов нерационально.

Существуют мастера, которые изготавливают ветрогенератор из асинхронного двигателя своими руками, но в любом случае перед сборкой нужно сначала рассчитать мощность потребления электроэнергии зданием. Ведь в небольших дачных домиках может быть один телевизор или дрель, для которых будет достаточно мощности электрогенератора, переделанного из обычной бензопилы.

Подготовка материала и сборка

Покупка асинхронного двигателя грозит большой потерей финансов, а для самостоятельной сборки могут понадобиться минимальные навыки в электрике, детали и инструменты. Но если принято решение сделать генератор переменного тока 220 В своими руками, то к этому необходимо подготовиться:

  1. Для нормальной работы генератора скорость вращения ротора должна быть больше чем обороты двигателя. Поэтому нужно отключить двигатель к сети и вычислить скорость вращения ротора, для этого можно использовать тахометр.
  2. Вычислить рабочую частоту оборотов будущего генератора. К примеру: обороты двигателя — 1200 об/мин, а рабочие обороты генератора будут — 1320 об/мин. Такое значение можно вычислить, добавив к оборотам двигателя 10% показателя тахометра;
  3. Для функционирования асинхронного двигателя необходимы конденсаторы одинаковой емкости для подключения между фазами.
  4. Емкость конденсаторов не должна быть сильно завышенной, иначе неизбежен сильный перегрев генератора.
  5. Конденсаторы должны быть изолированы и обеспечивать высчитанную скорость вращения ротора генератора.

Такое простое устройство уже можно использовать в качестве источника электроэнергии, но так как устройством производится высокое напряжение, то его лучше применять с понижающим трансформатором.

Бензиновый агрегат

Для сборки бензинового прибора необходима установка мотоблока и электродвигателя на одной станине с учетом параллельного расположения валов. Посредством двух шкивов будет передаваться вращательный момент от мотоблока к двигателю. Один шкив нужно установить на вал бензинового агрегата, а второй на электромотор. Благодаря правильному соотношению размера шкивов будет определяться частота оборотов ротора мотора.

После установки всех деталей и подключения ременной передачи можно приступить к электрической части:

  1. Обмотку электромотора необходимо соединить по схеме «звезда».
  2. Подключенные конденсаторы к фазам должны образовать треугольник.
  3. Между концом обмотки средней точкой образуется 220 В, а 380 — между обмотками.

Емкость устанавливаемых конденсаторов подбирается в зависимости от мощности электродвигателя. Устройством вырабатывается электроэнергия, а значит, нужно сделать заземление, в противном случае аппарат может быстро изнашиваться или стать причиной поражения током человека.

В качестве устройства с небольшой мощностью можно использовать однофазный двигатель от стиральной машины, дренажного насоса или другого бытового прибора. Так же как и трехфазный мотор, он должен подключаться параллельно обмотке. Также при конструировании можно использовать конденсатор фазового сдвига, но мощность придется увеличивать до нужного предела.

Такие простые приборы с однофазным мотором можно использовать для освещения дома или подключения маломощных электроприборов. При этом переделка схемы может позволить подключение аппарата к обогревателю или электропечи. Таким же образом могут изготавливаться подобные устройства с использованием неодимовых или других постоянных магнитов.

Достоинства самодельной конструкции

Главным и важным достоинством является экономия. Для самодельного варианта потребуется намного меньше денежных вложений, чем заводские аналоги.

При грамотном проведении сборки своими руками электрооборудование может быть довольно надежным и продуктивным в эксплуатации.

Единственным недостатком такого устройства является то, что для новичка может быть затруднительно разобраться во всех тонкостях сборки и изготовления прибора. При неправильном подключении и сборки возможны необратимые поломки, после чего потраченное время и деньги уйдут впустую.

Гидро- и ветростанции

Кроме бензиновых устройств, существуют и другие конструкции. Привести в движение вал электромотора можно с помощью ветряка или водяного потока. Конструкции не являются самыми простыми, но благодаря им, можно обойтись без использования бензинового или дизельного топлива.

Такое устройство, как гидрогенератор, можно собрать самостоятельно. При наличии протекающей реки возле дома воду можно применить как силу, вращающую вал. При этом в русло реки устанавливается гидроколесо с лопастями. Таким образом создается течение, вращающее турбину и вал электромотора, а в зависимости от количества установленных турбин и лопастей будет увеличиваться или уменьшаться поток воды и напряжение генератора.

Устройство ветрового агрегата немного сложнее, так как ветровая нагрузка не является постоянной величиной. Обороты ветряка, которые передаются на вал мотора должны регулироваться в зависимости от необходимой частоты оборотов электромотора. Регулятором в этом механизме выступает редуктор. Сложность конструкции заключается в том, что при повышении ветра необходим понижающий редуктор, а при понижении ветра — повышающий.

Рекомендации по использованию

Все асинхронные устройства, вырабатывающие электроэнергию, имеют повышенный уровень опасности, в связи с этим им нужна изоляция. С таким оборудованием необходимо обращаться очень аккуратно и держать его скрытым от воздействия внешних погодных условий:

  • Автономные устройства оснащаются измерительными датчиками для фиксации данных о работе. Рекомендуется установка тахометра и вольтметра.
  • Установка выключателя или отдельных кнопок включения и выключения.
  • Агрегат заземляется в обязательном порядке.
  • КПД асинхронного устройства может снижаться на 30−50%, что является неизбежным явлением при преобразовании электрической энергии из механической.
  • Необходимо следить за температурой установки и режимом работы, так как аппарат может перегреваться на холостом ходу.

Придерживайтесь таких простых правил в эксплуатации, и прибор будет служить на протяжении длительного времени и не предоставит неудобств.

Хотя самодельное приспособление и является простым в сборке, оно при этом требует определенных усилий, сосредоточенности при работе с конструкцией и правильным подключением электросети. Устройство такого типа целесообразно собирать в финансовом плане при наличии работоспособного неиспользуемого двигателя. В противном случае основной элемент прибора будет стоить половину цены рыночной установки. Ветровой или другой генератор лучше собирать из проверенных и работоспособных частей для повышения срока эксплуатации генератора.

Как проверить генератор мультиметром

Часто в виде генераторов используют асинхронные двигатели. Это вызвано наличием остаточной намагниченности вала. Барабан под беличью клетку отлит из лёгкого сплава, ось представляет чистой воды ферромагнитный материал. В результате после останова электродвигателя вал часто остаётся намагниченным. Ниже поясним, как проверить генератор мультиметром, расскажем о способах запуска мотора, добиваясь получения электрического тока.

Электрические генераторы

Большинство современных электрических генераторов работают на основе закона Фарадея для ЭДС, гласящего, что в проводнике возникает напряжение, пропорциональное площади и скорости изменения магнитного потока. Вдобавок указанная величина умножается на количество витков. Немедленно видим способы повысить вольтаж:

  1. Увеличить площадь намотки катушки.
  2. Повысить скорость изменения потока магнитного поля:
  • За счёт увеличения тока возбуждения ротора либо более сильных постоянных магнитов.
  • Путём повышения скорости вращения.

Если брать промышленные генераторы, преимущественно применяется первая методика. Это вызвано жёсткими требованиями к частоте генерации. Что касается площади катушки, параметр задан конструктивно, изменить его проблематично. Цели описания простейших сведений: в сети встречается немало примеров, где электродвигатели пытаются запустить в качестве генераторов. Отдельные попытки не слишком успешны, а авторы наглядно демонстрируют незнание простейших законов физики.

Итак, преимущество синхронных генераторов в постоянстве частоты – часто это главное требование. От параметров напряжения напрямую зависят скорость работы двигателей, нормальная работы цепей фильтрации и прочее. Если вольтаж неправильный, прежде всего, требуется проверить регулятор напряжения генератора сравнением с показаниями мультиметра. А представьте теперь, что произойдёт, если частота питания возрастёт дважды. Да, отдельные типы асинхронных двигателей с короткозамкнутым ротором, вдобавок коллекторные реагируют преимущественно на амплитуду. А дальше?

  • Проверяя напряжение генератора мультиметром, оцените разность потенциалов выходных (главных) гнёзд (клемм) без учёта линии заземления.
  • Проверяя зарядку генератора, проведите измерение на гнезде постоянного тока 12 В.

Предлагается правильно выбирать для оборудования источник питания. А в описанном случае эти знания важны по той причине, что конструкция синхронных и асинхронных генераторов различна. Следовательно, методики проверки обязаны учитывать упомянутый факт. Кратко рассмотрим виды генераторов переменного электрического тока.

Различные конструкции генераторов

Асинхронные генераторы переменного тока

Асинхронными указанные генераторы называются за то, что частота генерируемого тока отличается от скорости вращения вала (даже с учётом количества полюсов). Конструктивно подобная машина считается типичным двигателем с фазным или намагниченным ротором. От синхронной намотка вала отличается отсутствием участка между полюсами. За счёт этого плюс и минус менее выражены. Итак, в зависимости от типа конструкции асинхронного двигателя методика запуска его в режиме генератора различается.

Для короткозамкнутого ротора полагается предварительно намагнитить вал. Это делается при помощи короткого, но сильного импульса тока. От полярности зависит расположение полюсов. Обратите внимание, что сравнительно малое сечение вала не позволит создать сильное магнитное поле. Значит, сообразно указанному выше, приходим к выводу, что большого напряжения при помощи описанного генератора получить не удастся. Гораздо выгоднее намагнитить фазный ротор из пластин путём подачи напряжения на катушки. Со статора начнёт сниматься напряжение. Движущей силой становятся:

  1. Сгорающие газы или вал двигателя автомобиля.
  2. Ветряное колесо.
  3. Велосипед.

Электричество образуется за счёт изменения поля. Магниты бывают постоянными (короткозамкнутый ротор) или электрическими (фазный ротор). Второй тип устройств нужно запитывать током, к примеру, от аккумулятора через токосъёмник (кольцо на валу). Сообразно указанной конструкции вырисовываются способы проверки генератора мультиметров. В случае короткозамкнутого ротора тестируем исключительно статор. Количество выводов зависит от фазности питания и прочих особенностей:

Генератор асинхронного типа

  • Обмотки статора трёхфазного генератора объединены по схеме звезда. Образуют общую точку, а три противоположных конца сажаются на фазы А, В и С. В этом случае попарно следует мультиметром проверить генератор на предмет величины сопротивления. Ответ неизменно одинаковый.
  • Потом проверяется изоляция на корпус. Для этого потребуется специальное оборудование: формирователь испытательного напряжения 500 В и токовые клещи (один вариант среди прочих). Сопротивление изоляции по стандарту не меньше 20 МОм. Если присутствует короткое замыкание, двигатель строится по схеме с глухозаземлённой нейтралью, что типично для напряжений до 1 кВ. В этом случае конструкция уточняется по техническим характеристикам. Проще данные на асинхронный двигатель найти в интернете.
  • Статор бытового асинхронного двигателя намного сложнее. Подобные машины не используются в качестве генераторов, но… мы покажем, как проверить работоспособность. Чаще присутствует две обмотки, одна питается через конденсатор и становится пусковой либо вспомогательной. В нашем случае с каждой допустимо снимать напряжение. Сопротивление вспомогательной (или пусковой) обмотки обычно чуть больше, нежели у рабочей. Это легко проверить тестером. Потом измеряется сопротивление изоляции на корпус генератора.

Ротор тестируется вместе с токосъёмниками. Трёхфазные схемы рассчитаны на работу с изолированной нейтралью, чтобы проверить обмотку генератора мультиметром, следует попарно измерить сопротивление между всеми тремя кольцами. Значения обязаны сравняться. Иногда отмечается замыкание на корпус (схема с глухозаземлённой нейтралью). Все упирается в конструктивные особенности двигателей (генераторов). При наличии одного либо двух колец делаем вывод об однофазном питании. Прозванием катушку, проверяем изоляцию на корпус.

Синхронные генераторы переменного тока

Синхронные генераторы работают схожим образом, но выдерживается постоянная частота вращения вала. Отсюда параметры обладают большей стабильностью. Вот ряд отличий, учитываются, чтобы правильно проверить генератор мультиметром.

Обмотка переменного тока

На статоре (именуемом якорь) часто присутствует обмотка переменного тока, синхронизирующая вращение. Её роль сложно переоценить, а витки находятся, к примеру, между обмотками основной катушки. Роль полюсов в этом случае синхронизирующая. Сюда подаётся напряжение нужной частоты, за счёт взаимодействия с индуктором (ротором) задающее скорость оборотов. Обычно размеры обмотки меньше, нежели основной, сопротивление выше.

Подвозбудитель

В крупных синхронных генераторах присутствует вспомогательное оборудование – подвозбудитель. Это синхронная машина, вал которой оснащён постоянными магнитами. Напряжение, вырабатываемое генератором, выпрямляется и в дальнейшем используется в качестве тока для возбудителя. Так экономится энергия. Постоянные магниты вдобавок уменьшают число токосъемников, что положительно отражается на безотказности всей системы. Подвозбудитель становится, по сути, простым двигателем синхронного типа, обмотка статора прозванивается тестером в обычном порядке.

Диодный мост

В связи со сказанным выше иногда требуется проверить диодный мост генератора мультиметром. Кстати, это актуально для автолюбителей, где часто для выпрямления тока используется схема Ларионова. Диодный мост прозванивается в зависимости от конструкции. В быту наиболее распространены показанные на рисунке. Первый считается типичным решением для переменного тока одной фазы, а второй – схема Ларионова.

Согласно приведённому рисунку показываем, как прозвонить. Однофазный диодный мост без опаски оценивается на целостность каждого диода в отдельности. Для этого на мультиметре выставляется соответствующий режим, далее, безотносительно к положению катода и анода, щупы представляются с одной стороны, потом с другой. В результате прямое включение выдаёт значение 500 – 700 Ом, а обратное – обрыв.

Популярные конструкции диодных мостов

Результат иной, если где-то в цепи мост закорочен резисторами, но подобное случается редко, а номинал их достаточно велик, чтобы не оказывать влияния. Автомобильный мост Ларионова прозванивается аналогично. При возможности демонтируйте его из-под капота. Вход каждой фазы звонится на плюсовой и на минусовой выход. Значение сопротивления – до 1 кОм. Обратное включение легко проверить. Полагается красный щуп поставить на плюс и по очереди убедиться, что все фазы дают на чёрный щуп бесконечно большое сопротивление. Аналогично проверяется масса. Здесь уже чёрный щуп идёт по отрицательному выходу, а красный – по фазам.

Вспомогательное оборудование генераторов переменного тока

Генераторы переменного тока, как и двигатели, часто оснащаются термопредохранителями, тахометрами, датчиками Холла и прочим вспомогательным оборудованием. Имеются и специфические ступени, к примеру, реле защиты генератора от асинхронного режима (что чревато выходом оборудования из строя). В общем случае учитывайте, что в специфическом режиме часто запускаются обыкновенные двигатели. Следовательно, требуется уметь максимально простым способом проверить вспомогательное оборудование:

  1. Термопредохранители рассчитываются на определённую температуру, обычно указывается на корпусе. При превышении некоторого порога плавится изоляция, что чревато выходом обмоток из строя. Если брать генераторы, они от перегрузки ограждаются при помощи МТЗ (реле максимальной токовой защиты), что сочтём аналогом предохранителей. Действие основывается на ограничении по мощности, затребованной потребителем. К примеру, при коротком замыкании одной фазы она просто обрывается. Что касается термопредохранителей типичных двигателей, места их расположения обычно ограничиваются поверхностью магнитопровода или изоляцией обмоток (бугорок чётко виден среди витков). Следует найти выходные клеммы и прозвонить цепь со стороны разъёма.
  2. Термореле считаются аналогами термопредохранителей с многоразовым срабатыванием, уберегающими обмотку от сгорания. Когда двигатель остынет, генерацию тока можно возобновить.
  3. Датчики частоты обычно строятся по принципу тахометров. Организация устройств различается, в зависимости от этого проводится и проверка.

Подытожим: каждый двигатель возможно запустить в режиме генератора. Об этом прямо написано в Википедии. Как бы то ни было, конструкция генераторов обнаруживает особенности. Специфические методы регулировки и защиты отличаются от тех, что применяются для двигателей. Накладывают ограничения результаты остановки: в случае выхода из строя генератора последствия намного более печальные. Уже ввиду наличия таких особенностей цена сильно отличается.

В заключение скажем: по непроверенным данным у асинхронных генераторов меньшая уязвимость к коротким замыканиям на стороне нагрузки, а форма напряжения лучше. Вдобавок отпадает необходимость в поддержании скорости вращения вала, что станет большим плюсом для практиков. Что касается организации ГЭС, в них применяются исключительно синхронные машины ввиду очевидности требований стандартов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector