0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Riv двигателя что это такое

ДВС: что это такое в машине

Хотя по нашим дорогам уже можно встретить электрокары, но большинство начинающих водителей еще интересует, что такое ДВС в автомобиле, так именно такими агрегатами оснащено подавляющее число машин. Подробности узнаем далее.

Расшифровка ДВС

Под данной аббревиатурой скрывается двигатель внутреннего сгорания. Он может быть установлен не только в транспорте, но и в другой технике, например, газонокосилках, электрогенераторах, бензопилах и др. Подобное оборудование широко использует преимущества аппарата.

Двигатель внутреннего сгорания – это тепловое устройство, внутри которого энергия сгорающей топливной смеси переходит в механическую работу.

Такое устройство изобретено достаточно давно, а со второй половины прошлого века устанавливается на самоходный транспорт. Хотя конструкционно агрегат претерпел с тех пор много изменений, но принцип работы остался практически прежним.

Существует определенная градация таких моторов исходя из количества рабочих циклов:

  • двухтактные;
  • четырехтактные.

Конструкторы используют деление по методике приготовления топливной смеси:

  • карбюраторный;
  • инжекторный;
  • дизельный.

Первые два типа относятся к разновидностям с внешним топливообразованием, а последний – с внутренним типом топливообразования. Также внутри автомобильных движков энергия преобразовывается по-разному, что привело к возникновению турбинных, реактивных поршневых и комбинированных агрегатов.

Составные части

Автомобилистам, интересующимся своей техникой, желательно знать, из чего состоит ДВС. Современное устройство предполагает большое количество деталей. Они в комплексе влияют на производительность и эффективность работы всей силовой системы. К основным элементам относятся:

  • Блок цилиндров. Это базовая деталь установки, так как к ней привязываются остальные части. Внутри большинства цельных блоков обычно располагается 4 цилиндра. Также встречаются 6-ти, 8-ми и 12-ти цилиндровые авто. Реже количество бывает другим.
    Расположение полостей может быть линейным, V-образным и горизонтальным (опозитным).
  • Поршень. Внутри каждого из цилиндров компрессия создается поршнем, зафиксированным на шатуне. Он представляет собой полую цилиндрическую деталь из легких сплавов, перемещающуюся соосно.
  • Свечи. Если воспламенение не предполагается от сжатия топливной смеси, то для принудительного искрообразования должны стоять свечи. Они своевременно поджигают смесь, чтобы высвобождалась энергия.
  • Клапаны. Через них обеспечивается подача топлива и выпуск отработанных газов в выхлопную систему. Таким образом, они бывают впускные и выпускные. Как минимум одна пара задействована для каждого цилиндра.
  • Коленчатый вал. На нем крепятся шатуны с поршнями. Отбор мощности проводится от одного из хвостовиков коленвала. Благодаря этому элементу вращательное движение переводится в поступательное.

Так как вся система требует смазки, то снизу силовая установка имеет картер. В нем собирается масло, а за счет принудительной отправки часть его уходит на смазывание обратно.

ДВС: что это такое в машине?

Процессы преобразования энергии в силовой установке происходят множество раз в секунду. Таким образом удается двигать автомобиль, передавая вращение от коленвала посредством трансмиссии на ведущие оси машины.

Более подробно процесс включает несколько этапов. На первой стадии топливовоздушная смесь проникает из впускного клапана в камеру сгорания. Далее ее сжимает поршень до определенного объема. На этой стадии происходит искрообразование от свечи.

Воспламененная смесь при избыточной температуре обладает высоким давлением. За счет него обеспечивается создание усилия на торец поршня, толкая его от верхней точки сжатия вниз. Этот момент называется рабочим ходом. Соответственно шатун давит на коленвал и обеспечивает его вращение.

По инерции поршень снова идет вверх и в это время открываются выпускные клапаны. Из камеры сгорания удаляются продукты сгорания. Далее цикл повторяется снова.

Что такое двигатель TSI: особенности работы, характеристики и ресурс

Появление новых моторных технологий, таких как прямой или непосредственный впрыск топлива в цилиндры в сочетании с турбонаддувом, вынуждает компании активно их применять, несмотря на возникающие проблемы. Такие двигатели сложнее, менее надёжны, нуждаются в более качественном топливе и масле. Но конкуренция заставляет любыми способами повышать экономичность, снижать массу и габариты, обеспечивать рост показателей экологичности. Всё это привело немецкий концерн VAG к появлению довольно спорной линейки моторов TSI.

Когда появились моторы TSI (расшифровка)

Впервые эти двигатели были анонсированы в 2004 году, как замена ранее применявшейся линейке FSI – Fuel Stratified Injection, что означает послойный прямой впрыск бензина.

TSI означает примерно то же самое, но с наддувом, вначале это был Twinturbo Stratified Injection, подразумевая сложную систему двойного наддува, но потом от неё стали постепенно отходить, и более традиционно расшифровывать аббревиатуру, как просто Turbo Stratified Injection.

Двигатели постоянно модернизируются, ошибок было сделано много, что породило невероятно широкую линейку моторов, объединённых единым торговым обозначением TSI. У других компаний подобные же двигатели называются иначе, но сути дела это не меняет.

Линейка двигателей TSI

VAG постарался перевести на данные моторы практически всю свою автомобильную продукцию, используя их в своих марках Volkswagen, Audi, Skoda и SEAT.

Конкретных исполнений великое множество, отличаются они по ряду конструктивных особенностей и показателей:

  • рабочий объём 1,0, 1,2, 1,4, 1,5, 1,8, 2,0 и 3,0 литра;
  • мощность от 90 л.с. до 350 и выше, в вариантах спец исполнения на премиальных машинах;
  • наличие одной обычной турбины, двойного наддува с дополнительным механическим компрессором, турбины с изменяемой геометрией;
  • количество и расположение цилиндров от трёх в ряд до конфигурации V6;
  • цепной или ременный привод механизма газораспределения;
  • построение системы впрыска с разной степенью гомогенизации смеси;
  • рабочий цикл двигателя с разным принципом фазирования.

Общий принцип, тем не менее, во всех моторах соблюдается, это наличие наддува и возможность работать с послойной организацией впрыска. Двигатели прошли в своём развитии по разным оценкам от трёх до четырёх поколений.

Из всего многообразия моторов линейки можно выделить несколько наиболее популярных:

  • CAXA – объёмом 1,4 л, представитель уже устаревшего поколения EA111, ставился на Golf 5 и прочие соплатформенные автомобили, имел одну турбину без компрессора, развивал 122 л.с., запомнился массой проблем с цепью привода ГРМ, стуком поршней и большим потреблением масла;
  • CZDA – тот же объём, уже новое поколение EA211, где многие недостатки устранены, применена другая турбина, два фазовращателя, мощность увеличена до 150 л.с., алюминиевый блок, соответствует нормам Евро-6, выпускается до сих пор, но планируется замена на принципиально новую линейку с циклом Миллера;
  • CJSA – мощный мотор объёмом 1,8 л. семейства ЕА888 3 поколения, ставился на Skoda, Volkswagen, SEAT, Audi с поперечным расположением ДВС, развивал 180 л.с., отличался дополнительными форсунками во впускном коллекторе;
  • CHHB – ещё более мощный двухлитровый двигатель, развивающий 220 л.с., с чугунным блоком и интегрированным в головку впускным коллектором, применялся в Golf GTI 7 поколения, Tiguan и многих Audi;
  • BLG – образец высокофорсированного мотора 1,4 л., поколения EA111, обладавший совместно установленными турбиной и механическим компрессором, благодаря чему развивал 170 л.с. при уверенной тяге на всех оборотах.

Следует заметить, что концерн обладает удивительной особенностью изменять буквенное обозначение двигателей при малейших изменениях, ориентированных на увеличение или снижение мощности, экологический стандарт и даже рынок сбыта. Поэтому вариаций двигателей образовалось великое множество, хотя некоторые практически не отличаются.

Принцип работы турбированного мотора

Наличие турбонаддува не внесло в процесс организации горения существенных изменений. Двигатели используют в работе несколько способов повышения экономичности посредством врождённых преимуществ прямого впрыска:

  • создание стехиометрической гомогенной смеси, что очень похоже на впрыск в коллектор типа MFI, но с существенным уменьшением потерь на конденсацию;
  • работа с бедной гомогенной смесью при увеличении открытия дросселя больше оптимального, то есть с избытком воздуха;
  • послойная смесь, разбавляемая выхлопными газами и избыточным воздухом.

Последнее обеспечивается особым режимом впрыска на днище поршня с завихрением потока и подачей нормальной смеси в зону электродов свечи, когда в остальной части цилиндра смесь сверх бедная и к поджиганию непригодна.

Турбонаддув обеспечивает ускоренное наполнения цилиндров воздухом, но плохо работает на малых оборотах из-за недостаточной раскрутки турбины.

Поэтому на многих моторах линейки используется двойная система наддува, когда вначале электромагнитной муфтой и дополнительным байпасным клапаном подключается механический роторный компрессор с приводом через ремень от шкива коленвала.

Переключением разных режимов такого сочетания двух компрессоров заведует электронный блок управления двигателем. Он же и управляет использованием разных режимов прямого впрыска, в зависимости от характера нагрузки и требуемого крутящего момента.

В результате с двигателя удаётся снять уникальные показатели:

  • почти идеальное распределение крутящего момента по оборотам, когда его максимум достигается примерно от полутора тысяч об/мин и не меняется до оборотов, близких к максимальным;
  • экономичность двигателя заметно выделяет его в ряду конкурентов, достигая снижения расхода на 20% и более;
  • степень сжатия необычно высока для турбированных моторов, практически достигнув аналогичного показателя атмосферников, при этом моторы не склонны к детонации при работе на топливе нужного качества;
  • моторы достаточно компактны и имеют малую массу.

Семейство TSI оказалось чрезвычайно наукоёмким не только в процессе разработки, но и при массовом производстве, что связано с проявлением недостатков и необходимости их устранения конструктивными методами. Высокие показатели даром не даются.

Особенности конструкции

Принципиально отдельные узлы и системы двигателей не отличаются от аналогов, но некоторые конструктивные решения достаточно оригинальны.

Система турбонаддува

Основной особенностью стало применение на части двигателей двойного наддува, но не с большой и малой турбинами, как это иногда делается, а добавкой механического нагнетателя.

Выделяется несколько режимов работы системы:

  • отсутствие наддува при минимальной нагрузке, компрессоры отключены, воздух идёт через обходной клапан;
  • подключение только механического компрессора, не обладающего инерцией и хорошо справляющегося при средних нагрузках;
  • совместная работа роторного нагнетателя с турбиной при переходе к значительным нагрузкам, что устраняет даже малейшие признаки турбоямы;
  • отключение компрессора и работа турбины на полной мощности при максимальных нагрузках.

Такая гибкость позволяет сохранять максимальную эффективность и минимум аэродинамических потерь в тракте во всём диапазоне оборотов и крутящего момента, выравнивая его полку на внешней скоростной характеристике двигателя.

В последнее время появились достаточно эффективные турбины с изменяемой геометрией и малой инерционностью, что позволило отказаться от достаточно дорогого и массивного механического компрессора.

Система охлаждения

Высокое давление наддува требует охлаждения поступающего в цилиндры воздуха. При его нагреве уменьшается стойкость двигателя к детонации и ухудшается экономичность из-за меньшей плотности горячего газа на впуске. Поэтому в двигателях используется интеркулер – дополнительный радиатор с жидкостным теплообменником.

Подобное решение почти повсеместно применяется в дизельных двигателях, не менее уместно оно и в высокоэффективных бензиновых ДВС.

Система впрыска

Бензин распыляется прямо в цилиндры через многоточечные форсунки, что обеспечиваем хорошую гомогенизацию смеси. Чем выше давление впрыска, тем этот процесс эффективней, поэтому используются инжекторы и топливный насос очень высокого давления, до 150 атмосфер.

Направление факела всех отверстий в форсунках ориентировано на днище поршня, что позволяет осуществлять послойное смесеобразование за счёт отражения потока и направления его к свече зажигания. Изменение момента впрыска реализует все прочие выше перечисленные режимы.

Блок цилиндров

Существуют разные версии блоков, в том числе и более прочные чугунные, но в последнее время используются алюминиевые блоки с запрессованными чугунными гильзами.

Такие решения применяются и во многих других моторах, не всегда удачно. Дело в том, что уменьшение толщины стенок гильз для улучшения теплоотдачи ведёт к короблению и задирам.

Не во всех двигателях семейства эту проблему удалось полностью решить, особенно при использовании коротких поршней с минимальными потерями на трение, но это беда почти всех современных двигателей.

Преимущества и недостатки TSI

Настолько продвинутая конструкция не может не иметь преимуществ перед более простыми моторами. Это связано с максимально полным использованием энергии топлива во всех режимах:

  • высокая экономичность, удалось получить настоящий скачок, доходящий до 20% даже в сравнении с достаточно неплохими двигателями;
  • выполнение всех экологических норм, что во многом получилось благодаря эффективному многокомпонентному нейтрализатору, который удаётся поддерживать в оптимальном режиме за счёт прекрасной управляемости двигателя;
  • лёгкость получения требуемой мощности, которая благодаря эффективной системе впрыска и качественному наддуву ограничивается лишь прочностью деталей, моторы легко поддаются чип-тюнингу;
  • малые габариты и масса двигателей при сохранении возможностей по отдаче.

Новизна и сложность семейства TSI не могли не принести с собой и значительные недостатки:

  • реализация возможностей двигателей требует применения только качественного бензина и масел, они не терпят наличия серы в топливе, а споры о том, какое масло для этих двигателей лучше, не утихают, заводские рекомендации страдают излишним оптимизмом;
  • попытки снизить потери в двигателях привели к снижению ресурса, особенно на моторах первых генераций, быстро вытягивались цепи привода ГРМ, расход масла превышал привычные по другим моторам нормы, а поршни не выдерживали нагрузок;
  • двигатели страдают типичными для прямого впрыска болезнями, связанными с отложениями на впускных клапанах, некоторые модели пришлось даже снабжать дополнительными форсунками во впускном коллекторе;
  • сложность влечёт за собой высокую цену на автомобили, не всегда это оправдано снижением расхода бензина;
  • техническое обслуживание и ремонт обходятся очень дорого и требуют высокой квалификации персонала.

Двигатели последних поколений частично избавляются от некоторых характерных просчётов в конструкции предшественников, но ряд проблем не решён до сих пор, например, всё, что связано с расходом масла.

Тем не менее, моторы широко распространены, в том числе и на бюджетных моделях, а их дальнейшее развитие в виде ДВС с циклом Миллера и турбинами переменной геометрии указывает на следование концерна далее по выбранному пути использования технологий TSI.

Что представляет собой двигатель TSI и его характерные особенности

В 2004 году автоконцерн VAG (Volkswagen AG) анонсировал новый двигатель TSI, который был назван настоящим прорывом в двигателестроении. Производительный, мощный, экономичный – это лишь некоторые заявленные преимущества. Но под красивой рекламой скрывались и свои подводные камни. Об особенностях данной линейки моторов пойдет речь далее в статье.

  1. Что такое двигатель TSI
  2. Линейка моторов
  3. Особенности устройства и работы TSI
  4. Плюсы и минусы
  5. Основные неисправности
  6. Заключение

Что такое двигатель TSI

Требование экологических стандартов в Европе способствовало разработке двигателя TSI, который при небольшом объеме показывает высокую производительность и низкий расход топлива. Работа основывается на использовании двойного наддува и прямого впрыска топлива. Механический компрессор работает в паре с турбиной. Такие двигатели устанавливаются на марки Skoda, Audi, Volkswagen, Seat и некоторые другие.

Двигатель TSI

Разработки двигателя TSI велись еще в начале 2000-х, но в массовое производство двигатель пошел в 2005 году. Это была первая линейка TSI, которая была существенно обновлена в 2013 году, но об этом чуть ниже.

Многие спорят над правильной расшифровкой аббревиатуры TSI. Стоит сказать, что изначально было название Twincharged Stratified Injection (Двойной наддув послойный впрыск). После стали выходить модели с одной турбиной и аббревиатуру стали переводить как Turbo Stratified Injection (Турбированный послойный впрыск). В автомобилях Audi этот силовой агрегат имеет маркировку TFSI.

Линейка моторов

Линейка TSI представлена широким набором двигателей. Первая генерация (2005 – 2013 гг.) была представлена двигателями EA111 и EA888 Gen.2. Это моторы объемом 1.0, 1.2, 1.4, 1.6, 2.0 и V3.0.

В России наиболее популярны 1.2 и 1.4 TSI. Двигатель объемом 1.2 мощностью 90/105 л.с. имеет только одну турбину без компрессора. Объем 1.4 имеет вариации с одной турбиной или компрессор+турбина. Мощность мотора от 122 л.с. до 170 л.с. в стоковой комплектации. Топовым в линейке TSI является мотор объемом 3.0 V6 333 лошадиных сил, который, например, устанавливается сейчас на Volkswagen Touareg.

У первой линейки TSI были существенные недостатки, о которых мы скажем немного позже. В большинстве своем эти недостатки были исправлены в следующей генерации моторов EA211 и EA888 Gen.3.

Как видно, эти моторы имеют очень много модификаций.

Согласно данным разработчиков, ресурс двигателя рассчитан на 300 000 км пробега.

Особенности устройства и работы TSI

Рассмотрим работу самого популярного двигателя TSI объемом 1.4 литра. Он развивает мощность в 125 кВт, крутящий момент 249 Нм в диапазоне 1750-5000 об/мин. Расход топлива составляет всего 7,2 литра.

Основные элементы двигателя TSI

По сути, моторы TSI стали продолжением линейки FSI, в которых также используется технология непосредственного впрыска топлива. Топливо подается прямо в камеру сгорания через форсунки под давлением 150 бар. Для этого предусмотрен топливный насос высокого давления.

В зависимости от условий обеспечивается разное приготовление топливовоздушной смеси. На малых и средних оборотах происходит послойное смесеобразование. Воздух поступает в камеру сгорания на большой скорости. Впрыск топлива происходит в самом конце такта сжатия, тем самым обеспечивая высокую степень сжатия 10:1 несмотря на двойной наддув. Избыток воздуха, который возникает после сгорания, выступает в роли теплоизолятора.

При однородном (стехиометрическом) смесеобразовании впрыск топлива происходит на такте впуска, тем самым обеспечивая однородную смесь, которая сгорает максимально эффективно.

Система двойного турбонаддува TSI

При максимально открытой дроссельной заслонке образуется бедная гомогенная смесь. Воздух в цилиндрах движется очень интенсивно. Также в состав добавляются отработавшие газы на уровне 25%. Топливо подается на такте впуска.

Двойной наддув дает превосходную тягу. Механический компрессор обеспечивает полный крутящий момент уже на низких оборотах до 2000-2500 об/мин. Это исключает возникновение так называемой турбоямы. При достаточном давлении отработанных газов на 2500 об/мин заслонка открывается и в работу включается турбина, тем самым создается давление воздуха 2.5 бар. Механический компрессор работает от ременного привода.

Плюсы и минусы

Благодаря своей конструкции двигатель TSI имеет немало преимуществ. Среди них:

  • высокая производительность двигателя при небольшом объеме;
  • хорошая тяга уже на низких оборотах;
  • экономичность (расход 7,2 л);
  • компактность и небольшой вес (вес снижен на 14 кг);
  • возможности тюнинга и форсирования;
  • экологичность (меньше объем выбросов углекислого газа).

Но при всех достоинствах есть и свои недостатки. Особенно это касается двигателей EA 111 и EA888 Gen 2:

  • большой расход масла (замена масла после 7,5-10 тыс. километров пробега);
  • растягивание цепи ГРМ и обрыв;
  • высокое требование к качеству масла и к качеству топлива;
  • медленный прогрев двигателя.

Основные неисправности

Цепь ГРМ стала настоящей ахиллесовой пятой этих моторов. Так как двигатель TSI высоконагруженный, то она быстро растягивается. Проблемным оказался и натяжитель цепи. Цепь рекомендуется проверять после 50-70 тыс. километров пробега. Последствия от обрыва цепи ГРМ всем хорошо известны: загибание клапанов, задиры цилиндров и, как следствие, очень дорогой ремонт или, вообще, замена силового агрегата. Замена цепи и других составляющих (успокоитель, натяжитель) обходится достаточно дорого.

Во впускном коллекторе находится горячий воздух, также в него попадает масляный туман, что приводит к закоксовыванию впускного коллектора, дроссельной заслонки, впускных клапанов и маслосъемных колец. Также к закоксовыванию может привести поломка маслоотделителя. Водителю нужно внимательно следить за уровнем масла. Заливать только качественное масло, которое рекомендует производитель. Большой расход – это, скорее всего, не проблема, а следствие всех форсированных силовых агрегатов. Так называемый “масложор” образуется из-за турбины, высокого крутящего момента и конструкции самих поршней.

Масло также играет важную роль в охлаждении турбины. Некачественное или отработанное масло приведет к забиванию и поломки турбины.

Не меньшее значение имеет качественное топливо. Рекомендуется использовать бензин с октановым числом 95 и выше.

Медленный прогрев – это следствие применение сложной системы охлаждения двигателей TSI. Без двойной системы охлаждения обеспечен перегрев.

В третьей генерации моторов TSI EA211 и EA888 Gen.3 разработчикам удалось решить некоторые проблемы. Главным образом, это касается цепи ГРМ и медленного прогрева. Цепь заменили ремнем. Ресурс ремня остался примерно таким же (50-70 тыс. км), но его намного легче и дешевле заменить. На двигателях 1.8 и 2.0 tsi третьей генерации установили более качественную цепь ГРМ с ресурсом 150 тыс.км и больше.

В современных моторах 1.2 и 1.4 используется облегченный корпус, но чугунные гильзы. В остальных моделях также остается чугунный блок. Это позволило облегчить двигатель на 22 килограмма.

Заключение

Двигатели TSI постоянно совершенствуются. Первое поколение силовых агрегатов этого типа имели серьезные проблемы. В последующих генерациях они были устранены, но остался большой расход масла и требования по обслуживанию.

Автомобили с двигателями TSI подойдут тем, кто хочет получать удовольствие от вождения. Высокая производительность, динамика и низкий расход топлива – вот главные козыри технологии TSI, которая постоянно совершенствуется и дорабатывается. Если регулярно следить за силовым агрегатом, проходить вовремя ТО, менять масло, использовать качественный бензин, то данный двигатель проходит долго и без серьезных проблем.

Эволюция двигателя внутреннего сгорания

Как развивался ДВС: основные даты

Люди производят автомобили уже более века, и почти под каждым капотом стоит двигатель внутреннего сгорания. В течение последних 100 лет принцип его работы оставался неизменным: кислород и топливо поступают в цилиндры мотора, где происходит взрыв (воспламенение), в результате чего внутри силового агрегата образовывается сила, которая и двигает автомобиль вперед. Но с момента первого появления двигателя внутреннего сгорания (ДВС) каждый год инженеры оттачивают его, чтобы сделать быстрее, надежнее, экономичнее, эффективнее.

Благодаря этому сегодня все современные автомобили стали мощнее и экономичнее. Некоторые обычные автомобили сегодня имеют такую мощность, которая еще недавно была только в мощных дорогих суперкарах. Но без огромных прорывов в конструкции ДВС мы бы сегодня до сих пор владели маломощными прожорливыми автомобилями, на которых не уедешь далеко от заправки. К счастью, время от времени подобные прорывные технологии уже не раз открывали новый этап в развитии двигателей внутреннего сгорания. Мы решили вспомнить самые важные даты в эволюции развития ДВС. Вот они.

1955 год: впрыск топлива

До появления системы впрыска процесс попадания топлива в камеру сгорания двигателя был неточным и плохо регулируемым, поскольку топливно-воздушная смесь подавалась с помощью карбюратора, который постоянно нуждался в очистке и периодической сложной механической регулировке. К сожалению, на эффективность работы карбюраторов влияли погодные условия, температура, давление воздуха в атмосфере и даже на какой высоте над уровнем моря находится автомобиль. С появлением же электронного впрыска топлива (инжектора) процесс подачи топлива стал более контролируемым. Также с появлением инжектора владельцы автомобилей избавились от необходимости вручную контролировать процесс прогрева двигателя, регулируя дроссельную заслонку с помощью «подсоса». Для тех, кто не знает, что такое подсос:

Подсос – это ручка управления пусковым устройством карбюратора, с помощью которой на карбюраторных машинах было необходимо регулировать обогащение топлива кислородом. Так, если вы запускаете холодный двигатель, то на карбюраторных машинах необходимо открыть «подсос», обогатив топливо кислородом больше, чем необходимо на прогретом моторе. По мере прогревания двигателя нужно постепенно закрывать ручку регулировки пускового устройства карбюратора, возвращая обогащение топлива кислородом к нормальным значениям.

Сегодня подобная технология, естественно, выглядит допотопно. Но еще совсем недавно большинство автомобилей в мире оснащались карбюраторными системами подачи топлива. И это несмотря на то, что технология впрыска топлива с помощью инжектора пришла в мир в 1955 году, когда инжектор впервые был применен на автомобиле (ранее эта система подачи топлива использовалась в самолетах).

В этом году было проведено испытание инжектора на спорткаре Mercedes-Benz 300SLR, который смог проехать, не сломавшись, почти 1600 км. Это расстояние автомобиль преодолел за 10 часов 7 минут и 48 секунд. Испытание проходило в рамках очередной автогонки «Тысяча миль». Эта машина установила мировой рекорд.

Кстати, Mercedes-Benz 300SLR стал не только самым первым серийным автомобилем с инжекторным впрыском топлива, разработанным компанией Bosch, но и самым быстрым автомобилем в мире в те годы.

Два года спустя компания Chevrolet представила спорткар Corvette с впрыском топлива (система Rochester Ramjet). В итоге этот автомобиль стал быстрее первооткрывателя Mercedes-Benz 300SLR.

Но, несмотря на успех Chevrolet Corvette с уникальной системой впрыска топлива Rochester Ramjet, именно электронные инжекторные системы Bosch (с электронным управлением) начали свое наступление по миру. В результате за короткое время впрыск топлива, разработанный компанией Bosch, начал появляться на многих европейских автомобилях. В 1980-е годы электронные системы впрыска топлива (инжектор) охватили весь мир.

1962 год: турбонаддув

Турбокомпрессор является одним из самых драгоценных камней в двигателях внутреннего сгорания. Дело в том, что турбина, которая подает больше воздуха в цилиндры двигателя, когда-то позволяла

12-цилиндровым истребителям во время Второй мировой войны взлетать выше, лететь быстрее, дальше и меньше расходовать дорогое топливо.

В итоге, как и многие технологии, система турбин из авиатехники пришла в автопромышленность. Так, в 1962 году в мире были представлены первые серийные автомобили с турбокомпрессором. Ими стали BMW 2002, или Saab 99.

После чего компания General Motors попыталась развить дальше эту технологию турбирования двигателей внутреннего сгорания на легковых автомобилях. Так, на автомобиле Oldsmobile Jetfire появилась технология «Turbo Rocket Fluid», которая помимо турбины использовала резервуар с газом и дистиллированную воду для увеличения мощности двигателя. Это была настоящая фантастика. Но затем компания GM отказалась от этой сложной и дорогой, а также опасной технологии. Все дело в том, что уже к концу 1970-х годов такие компании, как MW, Saab и Porsche, заняв первые места во многих мировых автогонках, доказали ценность турбин в автоспорте. Сегодня же турбины пришли на обычные автомобили и в ближайшем будущем отправят обычные атмосферные моторы на пенсию.

1964 год: роторный двигатель

Единственным двигателем, который по-настоящему смог сломать форму обычного двигателя внутреннего сгорания, стал роторный чудо-мотор инженера Феликса Ванкеля. Форма его ДВС ничего общего не имела с привычным нам двигателем. Роторный мотор представляет собой треугольник внутри овала, вращающийся с дьявольской силой. По своей конструкции роторный двигатель легче, менее сложный и более крутой, чем обычный двигатель внутреннего сгорания с поршнями и клапанами.

Первыми роторные двигатели на серийных авто начали использовать компания Mazda и ныне уже не существующий немецкий автопроизводитель NSU.

Самым же первым серийным автомобилем с роторным двигателем Ванкеля стал NSU Spider, который начал выпускаться в 1964 году.

Затем компания Mazda наладила производство своих автомобилей, оснащенных роторным мотором. Но в 2012 году она отказалась от использования роторных двигателей. Последней с роторным мотором стала модель RX-8.

Но недавно, в 2015 году, Mazda на Токийском автосалоне представила концепт-кар RX-Vision-2016, который использует роторный мотор. В итоге в мире начали появляться слухи, что японцы планируют в ближайшие годы возродить роторные автомобили. Предполагается, что в настоящий момент специализированная группа инженеров Mazda где-то в Хиросиме сидит за закрытыми дверями и создает новое поколение роторных моторов, которые должны стать основными двигателями во всех будущих новых моделях Mazda, открыв новую эру возрождения компании.

1981 год: технология дезактивации цилиндров двигателя

Идея проста. Чем меньше цилиндров работает в двигателе, тем меньше расход топлива. Естественно, что двигатель V8 намного прожорливее, чем четырехцилиндровый. Также известно, что при эксплуатации автомобиля большую часть времени люди используют машину в городе. Логично, что если автомобиль оснащен 8- или 6-цилиндровыми моторами, то при поездках в городе все цилиндры в двигателе в принципе не нужны. Но как можно просто превратить 8-цилиндровый мотор в четырехцилиндровый, когда вам не требуется задействовать для мощности все цилиндры? На этот вопрос в 1981 году решила ответить компания Cadillac, которая представила двигатель с системой дезактивации цилиндров 8-6-4. Этот мотор использовал электромагнитные управляемые соленоиды для закрытия клапанов на двух или четырех цилиндрах двигателя.

Эта технология должна была повысить эффективность двигателя, например, при движении по шоссе. Но последующая ненадежность и неуклюжесть этого мотора с системой дезактивации цилиндров напугала всех автопроизводителей, которые в течение 20 лет боялись использовать эту систему в своих моторах.

Но теперь эта система снова начинает завоевывать автомир. Сегодня уже несколько автопроизводителей используют эту систему на своих серийных автомобилях. Причем технология зарекомендовала себя очень и очень хорошо. Самое интересное, что эта система продолжает развиваться. Например, уже скоро эта технология может появиться на четырехцилиндровых и даже на трехцилиндровых моторах. Это фантастика!

2012 год: двигатель с высокой степенью сжатия – воспламенение бензина от сжатия

Наука не стоит на месте. Если бы наука не развивалась, то сегодня мы бы до сих пор жили в Средневековье и верили в колдунов, гадалок и что земля плоская (хотя сегодня все равно есть немало людей, которые верят в подобную чушь).

Не стоит на месте наука и в автопромышленности. Так, в 2012 году в мире появилась очередная прорывная технология, которая, возможно, совсем скоро перевернет весь автомир.

Речь идет о двигателях с высокой степенью сжатия.

Мы знаем, что чем меньше сжимать воздух и топливо внутри двигателя внутреннего сгорания, тем меньше мы получим энергии в тот момент, когда топливная смесь воспламеняется (взрывается). Поэтому автопроизводители всегда старались делать двигатели с немаленькой степенью сжатия.

Но есть проблема: чем выше степень сжатия, тем больше риска самовоспламенения топливной смеси.

Поэтому, как правило, ДВС имеют определенные рамки в степени сжатия, которая на протяжении всей истории автопромышленности была неизменяемой. Да, каждый двигатель имеет свою степень сжатия. Но она не меняется.

В 1970-х годах в мире был распространен неэтилированный бензин, который при сгорании дает огромное количество смога. Чтобы как-то справиться с ужасной экологичностью, автопроизводители начали использовать V8 моторы с низким коэффициентом сжатия. Это позволило снизить риск самовоспламенения топлива низкого качества в двигателях, а также повысить их надежность. Дело в том, что при самовоспламенении топлива двигатель может получить непоправимый урон.

Но затем при массовом появлении электронного впрыска автопроизводители с помощью компьютера стали применять различные настройки, автоматически регулирующие качество топливной смеси, что позволило существенно улучшить экономичность двигателей и снизить уровень вредных веществ в выхлопе. Но главное, что удалось сделать с помощью компьютерных настроек и регулировки топливной смеси, – это снизить до минимума риск самовоспламенения топлива. В итоге со временем стало невыгодно использовать большие мощные моторы с низкой степенью сжатия. Так автопромышленность ввела новую моду – уменьшение количества цилиндров. Чтобы сохранить мощность в моторах, автопроизводители стали использовать турбины. Но главное – благодаря электронике, которая управляет качеством топливной смеси, автопроизводители снова могут создавать моторы с большой степенью сжатия, не опасаясь самовоспламенения топлива.

Но в 2012 году компания Mazda удивила весь мир, представив фантастический мотор SKYACTIV-G, который имеет невероятно высокий коэффициент сжатия для серийного двигателя. Степень сжатия этого мотора составляет 14:1. Это позволяет мотору извлекать энергию почти из каждой капли бензина без образования смога.

Следующим шагом для Mazda стал новый мотор SKYACTIV-X, который использует контролируемое зажигание (система SPCCI). Благодаря этой системе появилась возможность воспламенять бензин практически за счет одного только сжатия. То есть как в дизельных моторах. Также в двигателях SKYACTIV-X есть возможность воспламенять топливо обычным образом. Причем электроника автоматически выбирает, как выгоднее воспламенять бензин в камере сгорания. Все зависит от потребностей водителя и условий движения.

Например, если вам нужна сила (крутящий момент), то двигатель SKYACTIV-X будет воспламенять топливо от силы сжатия (почти как дизель). Если вам нужна мощность, то мотор с высокой степенью сжатия будет воспламенять топливо обычным образом. Причем реально для придания мощности будет использована последняя капля бензина.

Даже спустя столетие и даже с появлением альтернативных видов топлива, а также с появлением электрокаров двигатели внутреннего сгорания остаются главными силовыми агрегатами в автопромышленности. И несмотря на то что многие эксперты считают, что ДВС изжил себя и в скором времени должен исчезнуть из автомира, нам кажется, что двигатель внутреннего сгорания еще не развился до конца. Также мы считаем, что мир в ближайшие 100 лет все равно не будет готов полностью отказаться от ДВС, работающих на бензине.

И кто его знает, что нам подготовят автомобильные компании в ближайшем будущем. Ведь их инженеры не зря получают бутерброды с черной икрой. Вполне возможно, что уже скоро очередной автопроизводитель удивит нас какой-нибудь новой технологией в ДВС.

Так что рано сбрасывать со счетов традиционные моторы. Может быть, электрокары – это временное явление? Скорее всего, это более вероятно.

Что такое ДВС и как работает двигатель внутреннего сгорания?

На сегодняшний день двигатель внутреннего сгорания (ДВС) или как его еще называют «атмосферник» — основной тип двигателя, который широко применяется в автомобильной индустрии. Что такое ДВС? Это — многофункциональный тепловой агрегат, который при помощи химических реакций и законов физики преобразует химическую энергию топливной смеси в механическую силу (работу).

Двигатели внутреннего сгорания делятся на:

  1. Поршневой ДВС.
  2. Роторно-поршневой ДВС.
  3. Газотурбинный ДВС.

Поршневой двигатель внутреннего сгорания — самый популярный среди вышеперечисленных двигателей, он завоевал мировое признание и уже много лет лидирует в автоиндустрии. Предлагаю более детально рассмотреть устройство ДВС, а также принцип его работы.

К преимуществам поршневого двигателя внутреннего сгорания можно отнести:

  1. Универсальность (применение на различных транспортных средствах).
  2. Высокий уровень автономной работы.
  3. Компактные размеры.
  4. Приемлемая цена.
  5. Способность к быстрому запуску.
  6. Небольшой вес.
  7. Возможность работы с различными видами топлива.

Кроме «плюсов» имеет двигатель внутреннего сгорания и ряд серьезных недостатков, среди которых:

  1. Высокая частота вращения коленвала.
  2. Большой уровень шума.
  3. Слишком большой уровень токсичности в выхлопных газах.
  4. Маленький КПД (коэффициент полезного действия).
  5. Небольшой ресурс службы.

Двигатели внутреннего сгорания различаются по типу топлива, они бывают:

  1. Бензиновыми.
  2. Дизельными.
  3. А также газовыми и спиртовыми.

Последние два можно назвать альтернативными, поскольку на сегодняшний день они не получили широкого применения.

Спиртовой ДВС работающий на водороде — самый перспективный и экологичный, он не выбрасывает в атмосферу вредный для здоровья «СО2», который содержится в отработанных газах поршневых двигателей внутреннего сгорания.

Поршневой ДВС состоит из следующих подсистем:

  1. Газораспределительный механизм (ГРМ).
  2. Кривошипно-шатунный механизм (КШМ).
  3. Система впуска.
  4. Топливная система.
  5. Система смазки.
  6. Система зажигания (в бензиновых моторах).
  7. Выпускная система.
  8. Система охлаждения.
  9. Система управления.

Корпус двигателя состоит из нескольких частей, в которые входят: блок цилиндров, а также головка блока цилиндров (ГБЦ). Задача КШМ — преобразовать возвратно-поступательные движения поршня во вращательные движения коленвала. Газораспределительный механизм необходим ДВС для обеспечения своевременного впуска в цилиндры топливно-воздушной смеси и такой же своевременный выпуск отработанных газов.

Впускная система служит для своевременной подачи воздуха в двигатель, который необходим для образования топливно-воздушной смеси. Топливная система осуществляет подачу в двигатель топлива, в тандеме две этих системы работают над образованием топливно-воздушной смеси после чего она подается посредством системы впрыска в камеру сгорания.

Воспламенение топливно-воздушной смеси происходит благодаря системе зажигания (в бензиновых ДВС), в дизельных моторах воспламенение происходит за счет сжатия смеси и свечей накала.

Система смазки как уже понятно из названия служит для смазки трущихся деталей, снижая тем самым их износ, увеличивая срок их службы и отводя тем самым от их поверхностей температуру. Охлаждение нагревающихся поверхностей и деталей обеспечивает система охлаждения, она отводит температуру при помощи охлаждающей жидкости по своим каналам, которая проходя через радиатор — охлаждается и повторяет цикл. Система выпуска обеспечивает вывод отработанных газов из цилиндров ДВС посредством выхлопной системы, которая входит в состав этой системы, снижает шум сопровождаемый выброс газов и их токсичность.

Система управления двигателем (в современных моделях за это отвечает электронный блок управления (ЭБУ) или бортовой компьютер) необходима для электронного управление всеми вышеописанными системами и обеспечения их синхронности.

Как работает двигатель внутреннего сгорания?

Принцип работы ДВС базируется на эффекте теплового расширения газов, которое возникает во время сгорания топливно-воздушной смеси, за счет чего осуществляется движение поршня в цилиндре. Рабочий цикл двигателя внутреннего сгорания происходит за два оборота коленвала и состоит из четырех тактов, отсюда и название — четырехтактный двигатель.

  1. Первый такт — впуск.
  2. Второй — сжатие.
  3. Третий — рабочий ход.
  4. Четвертый — выпуск.

Во время первых двух тактов — впуска и рабочего такта, поршень движется вниз, за два других сжатие и выпуск – поршень идет вверх. Рабочий цикл каждого из цилиндров настроен таким образом чтобы не совпадать по фазам, это необходимо для того чтобы обеспечить равномерность работы двигателя внутреннего сгорания. Есть в мире и другие двигатели, рабочий цикл которых происходит всего за два такта – сжатие и рабочий ход, этот двигатель называется двухтактным.

На такте впуска топливная система и впускная образуют топливно-воздушную смесь, которая образуется во впускном коллекторе или непосредственно в камере сгорания (все зависит от типа конструкции). Во впускном коллекторе в случае с центральным и распределенным впрыском бензиновых ДВС. В камере сгорания в случае с непосредственным впрыском в бензиновых и дизельных моторах. Топливно-воздушная смесь или воздух во время открытия впускных клапанов ГРМ подается в камеру сгорания за счет разряжения, которое возникает во время движения поршня вниз.

Впускные клапаны закрываются на такте сжатия, после чего топливно-воздушная смесь в цилиндрах двигателя сжимается. Во время такта «рабочий ход» смесь воспламеняется принудительно или самовоспламеняется. После возгорания в камере возникает большое давление, которое создают газы, это давление воздействует на поршень, которому ничего не остается как начать двигаться вниз. Это движение поршня в тесном контакте с кривошипно-шатунным механизмом приводят в движение коленчатый вал, который в свою очередь образует крутящий момент, приводящий колеса автомобиля в движение.

Такт «выпуск» открывает выпускные клапаны газораспределительного механизма, после чего отработанные газы освобождают камеру сгорания, а после и выпускную систему, уходя охлажденными и частично очищенными в атмосферу.

Короткое резюме

После того как мы рассмотрели принцип работы двигателя внутреннего сгорания можно понять почему ДВС обладает низким КПД, который составляет примерно 40%. В то время как в одном цилиндре происходит полезное действие, остальные цилиндры грубо говоря бездействуют, обеспечивая работу первого тактами: впуск, сжатие, выпуск.

На этом у меня все, надеюсь вам все понятно, после прочтения данной статьи вы легко сможете ответить на вопрос, что такое ДВС и как устроен двигатель внутреннего сгорания. Спасибо за внимание!

Рекомендую посмотреть данное видео в нем вы найдете очень много для себя полезного!

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector