0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Холостой ход двигатель адп

Холостой ход инжекторного двигателя

Режим холостого хода определяется системой управления двигателем при следующем:

Закрыта дроссельная заслонка

Обороты двигателя меньше заданного уровня.

Этот уровень составляет плюс 25% к заданной частоте оборотов холостого хода. Заданная частота вращения коленчатого вала в режиме холостого хода определяется автоматически в зависимости от теплового состояния двигателя и скорости движения автомобиля.

Система выставляет специальный признак наличия холостого хода, этот признак отображается тестером.

К сожалению, в системе нет сигнала включения КПП, поэтому реально в этом режиме автомобиль может двигаться, если включена КПП, или двигаться по инерции, при выключенной КПП.

На сухом асфальте движение с включенной КПП и закрытым положением дроссельной заслонки может служить некоторым тестом работы двигателя и ее системы управления.

Движение в режиме холостого хода в небольшую горку на первой, второй и даже третьей передаче должно происходить плавно, без рывков, и не требовать нажатия на педаль дроссельной заслонки.

Движение автомобиля накатом на четвертой передаче при скорости ниже 50 км/час должно осуществляться без подергиваний.

Неисправности в системах зажигания и топливоподачи в этих режимах проявляются ощутимыми толчками при движении автомобиля.

Нас интересует режим холостого хода на остановившемся автомобиле, поскольку это основное состояния для диагностики и проверки системы управления — можно открыть капот, и «любоваться» работой системы управления.

Практически совсем нет станций технического обслуживания, где для проверки системы управления и двигателя можно создать ездовые режимы, поставив автомобиль на барабаны.

После проверки системы управления на станциях технического обслуживания, с подключением красивых приборов, часто можно слышать — «у Вас все в порядке по параметрам работы системы».

Но проблемы с расходом топлива, динамикой разгона, наличию рывков и провалов остаются. Что же можно проверить в системе управления на режиме холостого хода?

Первое — топливоподача. Легко убедиться в правильности работы насоса регулятора давления, цепей управления форсунками.

Можно сделать баланс форсунок специальным тестером и замерить допустимость их расходных характеристик. К дальнейшему поиску проблем с работой двигателя лучше приступать, когда есть уверенность в правильной работе системы топливоподачи.

Второе — система подачи питания на элементы ЭСУД.

Проверить напряжения бортовой сети, напряжение питания датчиков, срабатывание всех исполнительных элементов, проверить выходные напряжения с датчиков.

Для этого удобно иметь специальные приборы: разветвитель сигналов с блока управления, имитаторы датчиков, тестер форсунок и шагового мотора (ДСТ-6Т).

Третье — проверка работы системы зажигания. Опыт показывает, что все проблемы лежат в высоковольтной части этой системы: модуль зажигания, высоковольтные провода, свечи. Эта проверка должна проводиться при помощи специального высоковольтного пробника.

Четвертое — установка коэффициента коррекции СО, если машина не оборудована системой подавления токсичности: L-зонд, нейтрализатор, адсорбер.

Функционально, коэффициент коррекции СО нужно выставлять по показаниям газоанализатора. Для устойчивой работы двигателя на режиме холостого хода можно обойтись и без газоанализатора.

Коэффициент коррекции СО является мультипликативной составляющей времени открытия форсунки (множитель).

Уменьшая или увеличивая его значение можно снизить расход топлива через форсунку в режимной области работы двигателя: малые наполнения, обороты близкие к оборотам холостого хода 800 — 1000 об/мин.

В городском цикле движения правильная топливоподача в этом режиме позволяет снижать расход топлива на 0,8 л /100 км.

Холостой ход двигателя является устойчивым режимом. Устойчивость определяется рабочим процессом двигателя.

Превышение оборотов выше заданных, снижает наполнение в цилиндры двигателя, как следствие мощность падает, падают обороты, наполнение в цилиндры двигателя увеличивается, как следствие увеличивается мощность, обороты возрастают и т.д.

При правильно рассчитанных параметрах управления топливоподачи, угла опережения зажигания, установкой шагового двигателя легко добиться поддержания заданных оборотов холостого хода. При этом одна и та же точка стационарности по оборотам холостого хода может быть достигнута разным соотношением параметров: расход воздуха, время открытия форсунки, угол опережения зажигания (зависит от состояния двигателя и работы элементов системы управления).

В системе управления нет возможности изменить заданные обороты холостого хода (жестко заданный программой график, зависящий от температуры охлаждающей жидкости), невозможно переопределить положение шагового мотора и угла опережения зажигания, поскольку эти параметры изменяются автоматически в системе управления. Используя тестер в режиме управления исполнительными механизмами, можно изменить положение шагового мотора или обороты холостого хода.

Эти изменения не запоминается в памяти контроллера, поэтому действует только на момент работы тестера в режиме «КОНТРОЛЬ ИМ».

В руках пользователя единственным параметром, регулирующим работу двигателя на ХХ, остается коэффициент коррекции СО. В автомобилях с регулированием подачи по L-зонду и этой возможности нет.

Увеличение коэффициента коррекции СО (обогащение смеси) приводит к снижению расхода воздуха в двигатель — среднее положение шагового мотора уменьшается. Уменьшение коэффициента коррекции СО приводит к увеличению расхода воздуха.

По работе системы зажигания (автоматическая установка УОЗ на холостом ходу) можно судить о стабильности работы системы и двигателя в целом. Если УОЗ имеет частые отклонения от своего среднего положения более 4 гр.п.к.в., то это говорит о нестабильности рабочего процесса в цилиндрах двигателя.

Как правило, нужно выставить коэффициент СО таким, чтобы, с одной стороны, время открытия форсунки было минимальным, а с другой, добиться стабильности параметра угла опережения зажигания.

В системах с регулированием топливоподачи с контуром обратной связи по L-зонду остается только наблюдать за стабильностью угла опережения зажигания. А по соотношению расхода воздуха и времени открытия форсунки оценивать стабильность работы обратной связи по L-зонду. Просмотр ячеек таблицы коррекции топливоподачи по L-зонду в области холостого хода помогает определить, какое изменение в состав смеси вносит эта коррекция.

Читать еще:  Чем надо растачивать двигатель

Пятое — пропуски воспламенения в цилиндрах двигателя, которые приводят к нестабильности оборотов холостого хода, как правило, связаны с неисправностями в системе зажигания или работой системы топливоподачи.

Разделить две этих составляющие очень непросто, поскольку они связаны. Топливоподача определяется расчетом, в основе которого лежат показания датчика расхода воздуха, а сам расход определяется наполнением цилиндров воздухом, зависящим от оборотов, регулировка которых осуществляется углом опережения зажигания и зависит от состава смеси, т. е топливоподачи. Круг замкнулся.

Поэтому надо обязательно проверить состояние канала подачи воздуха. Датчик массового расхода должен иметь стабильное входное напряжение 5В, а выход его при неработающем двигателе и включенном зажигании должен держать напряжение 1В.

Шестое — минимальный подсос воздуха в канале от датчика массового расхода к впускному коллектору изменит показания массового расхода воздуха (уменьшит показания), т.е. обеднит топливоподачу, что приведет к изменениям в работе двигателя.

В системах с регулированием по L-зонду такое обеднение будет скомпенсировано, но провалы при разгоне и торможении останутся, так как многие параметры управления (в частности угол опережения зажигания) и коррекции этих параметров рассчитываются, исходя из показаний того же расходомера воздуха.

Седьмое — неисправность самого датчика L-зонда является явной причиной раскачки оборотов холостого хода, поскольку нарушается сбалансированность работы контура поддержания оборотов и контура поддержания стехиометрического состава смеси.

Раскачка оборотов на режиме холостого хода не всегда определяется показаниями встроенного в панель приборов тахометра. Его показания на малых оборотах часто ошибочны, убедитесь в стабильности оборотов холостого хода по диагностическим приборам.

Восьмое — самым больным местом в работе системы управления двигателем является зажигание, вернее его высоковольтная часть, которая как бы не имеет отношения к электронике, и включает в себя модуль зажигания, высоковольтные провода и свечи зажигания.

Нарушения в этой системе и определяют большую часть проблем в работе двигателя. Подход к проверке этой части не отличается от проверки системы зажигания карбюраторных двигателей.

Состояние свечей, снятых с двигателя, помогает определить неработающие или плохо работающие цилиндры.

Если плохо работают два цилиндра 1-4 или 3-2, то, похоже, что неисправность кроется в модуле зажигания (в работе какой-то его пары катушек). Удобнее пользоваться специальными приборами или стендами для проверки свечей, высоковольтных проводов.

Девятое — работа системы синхронизация двигателя. Редкие сбои в синхронизации невозможно определить ни одним прибором. Только Мотор-Тестер с аппаратным подключением к датчику положения коленчатого вала может помочь выявить эти сбои.

Нарушение синхронизации в такте работе двигателя, отключает и подачу топлива и зажигания, расчет наполнения в цилиндрах невозможен. Здесь нет четких советов по определению, что же неисправно:

блок управления, датчик положения коленчатого вала, проводка.

Система самодиагностики блока управления может определить сбои в синхронизации, но только тогда, когда двигатель уже не может работать.

Единственно, что можно сказать, провалы и перебои в работе двигателя с плохой синхронизацией появляются на всех режимах.

Эти перебои незначительны, но ездовые качества автомобиля резко снижаются, при этом невозможно выделить конкретно неработающий цилиндр. Чаще всего помогает замена датчика коленчатого вала.

Неисправность в блоке управления маловероятна. Другие неисправности в системе синхронизации, как правило, ведут к полной невозможности запустить двигатель.

Карбюраторы мотоциклетного типа. Система холостого хода

Здравствуйте, уважаемые читатели. Возвращаемся к теории и практике по карбюраторам мотоциклетного типа.

Сегодня речь пойдет о системе холостого хода и работе карбюратора в переходных режимах.

Устройство системы холостого хода

В конструкциях современных карбюраторов есть не только главная дозирующая система. Она одна не позволила бы получить необходимый состав смеси для поддержания нормальной работы двигателя в режиме без нагрузки, другими словами когда двигатель должен работает на холостом ходу. За нормальную работу в режиме холостого хода отвечает одноименная система. Рассмотрим один из вариантов ее конструкции.

Устройство системы холостого хода: 1 — переходное отверстие; 2 — воздушный канал; 3 — винт состава смеси на холостом ходу; 4 — отверстие малых оборотов холостого хода; 5 — топливный канал; 6 — топливный жиклер, совмещенный с эмульсионной трубкой

В состав системы холостого хода входит два топливоподающих отверстия. Они имеют специальные названия: переходное отверстие 1 и отверстие малых оборотов холостого хода 4 (варианты расположения на реальном карбюраторе представлены на рисунке ниже). Переходное отверстие располагается под дроссельной заслонкой, в непосредственной близости от ее задней кромки. Отверстие малых оборотов холостого хода находится за дроссельной заслонкой, на небольшом отдалении в точке, где при закрытой дроссельной заслонке разрежение наибольшее. Такое положение обусловлено стремлением к обеспечению наиболее легкого истечения топлива из отверстия малых оборотов холостого хода.


Варианты расположений топливоподающих отверстий: 1 — переходное отверстие; 2 — отверстие малых оборотов холостого хода

В топливоподающем канале 5 системы холостого хода находится жиклер 6, который ограничивает истечение топлива при работе на холостых оборотах. В этом же канале расположена эмульсионная трубка (часто совмещенная с жиклером), в которой топливо смешивается с воздухом, поступившим по воздушному каналу 2.

К элементам точной настройки относится винт 3, регулирующий сечение воздушного канала. В данной конструкции винт влияет на состав смеси. Ниже будет рассмотрена конструкция, в которой аналогичный винт регулирует количество смеси.

Принцип работы на малых оборотах холостого хода

При закрытой или почти закрытой дроссельной заслонке разрежение в зоне распылителя главной дозирующей системы недостаточно для истечения топлива из него. При таком положении дросселя зона наибольшего разрежения находится за дроссельной заслонкой. Именно в этом месте располагают отверстие малых оборотов холостого хода. Работа двигателя полностью обеспечивается топливом, поступающим из этого отверстия.

Читать еще:  Характеристики двигателя тойота 3vz

Эмульсирование топлива в системе холостого хода

В системе холостого хода топливо смешивается с небольшим количеством воздуха, который поступает по специальному воздушному каналу. Процесс эмульсирования топлива происходит следующим образом. Когда дроссельная заслонка закрыта и горючая смесь подается только через отверстие малых оборотов холостого хода, топливо смешивается с воздухом, поступающим не только по воздушному каналу, но и с воздухом из-под дроссельной заслонки, прошедшим через переходное отверстие. По мере подъема дросселя происходит перемещение зоны максимального разрежения в сторону распылителя главной дозирующей системы. В связи с этим количество поступающего в систему холостого хода воздуха через переходное отверстие уменьшается. В какой-то точке подъема дросселя воздух совсем перестает поступать из переходного отверстия, и под действием разрежения топливо начинает фонтанировать через него. В этот момент весь воздух начинает поступать только через специальный воздушный канал, пропускная способность которого регулируется винтом конической формы.

Винт регулировки смеси на холостом ходу

Окончательная (точная) настройка системы холостого хода производится с помощью специального винта с коническим кончиком, который регулирует пропускную способность воздушного канала системы холостого хода. Некоторые модели карбюраторов оснащены винтом, регулирующим количество топлива уже предварительно смешанного с воздухом, подаваемого системой холостого хода.


Винты регулировки смеси на холостом ходу. Два винта слева регулируют количество смеси, два справа — состав смеси.

Так как в одном случае винт регулирует состав смеси, а в другом — количество топливной смеси, применяются противоположные приемы регулировки. Если винт регулирует пропускную способность воздушного канала, то для обогащения смеси необходимо уменьшить количество воздуха путем закручивания винта. Для того чтобы сделать смесь беднее, винт необходимо выкручивать. Если винт регулирует количество подаваемого топлива, то, напротив, для обогащения его выкручивают, для обеднения, соответственно, закручивают.

Понять, по какому принципу осуществляется регулировка на том или ином карбюраторе, очень просто. Винт регулировки воздуха располагают ближе к входному устройству карбюратора, который подсоединяют к фильтру, в то время как винт регулировки топлива располагают ближе к фланцу крепления к двигателю.


Расположение винтов регулировки смеси на холостом ходу: a — винт регулировки состава смеси, b — винт регулировки количества смеси

Жиклер холостого хода

Если установлен жиклер слишком большой пропускной способности, двигатель начинает работать неустойчиво, медленно набирает обороты, звук выхлопа становится глухой и слабый. Если жиклер обладает недостаточной пропускной способностью, двигатель хорошо набирает обороты, но при резком закрытии дросселя обороты не снижаются столь же быстро. Снижение оборотов до холостого хода происходит с запаздыванием вплоть до нескольких секунд.

Слишком маленькая пропускная способность приводит к неустойчивой работе и частым остановкам двигателя, как в режиме малого холостого хода, так и при попытках поднять дроссель. Работа двигателя с установленным жиклером холостого хода недостаточной пропускной способности может привести к прихвату поршня к стенке цилиндра в момент закрытия дроссельной заслонки. Риск особенно велик, если до этого двигатель работал на полном газу в течение продолжительного времени. В таких условиях после закрытия дросселя двигатель по инерции сохраняет большие обороты. Если в этот момент система холостого хода приготавливает бедную смесь, тепловая нагрузка резко увеличивается из-за чрезмерного обедненного сгорания, что повышает риск перегрева и последующего заклинивания.

Работа системы холостого хода в переходном режиме

Когда водитель начинает приоткрывать дроссельную заслонку, разрежение в зоне отверстия малых оборотов холостого хода уменьшается. Это приводит к уменьшению подачи топлива через него, поэтому в работу необходимо включаться другой системе, обеспечивающей плавный переход в работе от системы холостого хода к главной дозирующей системе.

Когда дроссельная заслонка поднимается примерно до 1/4 всего хода, разрежение в зоне отверстия малого холостого хода падает настолько, что истечение топлива из него прекращается. Область максимального разряжения смещается ближе к распылителю главной дозирующей системы, но еще не достигает его. Как раз в этом месте расположено переходное отверстие. Из него начинает фонтанировать топливо в количестве, достаточном для обеспечения плавного перехода в работе двигателя от холостого хода к режиму частичных нагрузок, когда работает уже главная дозирующая система.

Отметим, что жиклер холостого хода важен не только для работы на малых оборотах холостого хода, но и для переходного режима, так как он также регулирует количество топлива, истекающего из переходного отверстия. Наряду с жиклером на работу в переходных режимах оказывают влияние угол среза дроссельной заслонки, специальный выступ на задней части дроссельной заслонки, форма насадки вокруг распылителя главной дозирующей системы, специальный паз на задней кромке дроссельной заслонки.


Элементы дроссельной заслонки, влияющие на переходной режим. Цветом обозначены выступ на задней части дроссельной заслонки (a) и специальный паз на задней кромке (b).

Датчик холостого хода ЗМЗ 405

Регулятор или датчик РХХ холостого хода двигателя ЗМЗ-405) – один из главных исполнительных механизмов системы управления двигателем. От его корректной работы зависит стабильность оборотов на холостом ходу, потребление топлива, ситуации с внезапным глушением двигателя.

Регулятор (РХХ-60 или 0280 140 545) установлен на ресивере системы впуска воздуха. Он представляет собой клапан с электроприводом, регулирующий подачу воздуха во впускную систему в обход дроссельной заслонки, что обеспечивает поддержание заданных оборотов холостого хода на различных режимах работы двигателя (пуск, прогрев, торможение двигателем, появление дополнительной нагрузки от навесного оборудования). По сути – это регулятор холостого хода.

При отказе регулятора или неисправности в его цепи блок управления включит лампу сигнализатора КМСУД, а в память запишет соответствующий код неисправности. С неисправным регулятором двигатель на холостом ходу может глохнуть после пуска и работать на повышенных оборотах. Если из-за механических повреждений или загрязнения поворотная заслонка станет заедать, то двигатель будет нестабильно работать на холостом ходу.

  1. Как действует датчик холостого хода ЗМЗ 405
  2. Принцип действия датчика холостого хода ЗМЗ 405
  3. Замена датчика холостого хода ЗМЗ 405
Читать еще:  Шкода октавия шумно работает двигатель

Как действует датчик холостого хода ЗМЗ 405

В карбюраторных моторах проблему обогащения смеси при запуске ДВС решала пусковая ручка и регулировочные шайбы. С возникновением электронного зажигания этим занимается регулятор холостого хода в комплексе с остальными датчиками и ЭБУ. Его принцип работы выглядит следующим образом:

  • калибровка РХХ производится контроллером ЭБУ автоматически после обнаружения этого датчика в системе;
  • фактически РХХ является шаговым электродвигателем с конусной иглой в специальном отверстии обводного канала дроссельной заслонки;
  • РХХ контакт никаких сигналов в «мозг» машины не передает, но получает их от контроллера, поэтому является не датчиком, а исполнительным устройством – электроклапаном;
  • в свою очередь, бортовой компьютер «видит», что в топливной смеси недостаточно воздуха по сигналам ДМРВ, сравниваемым с сигналами ДПДЗ;
  • на регулятор ХХ подается напряжение, игла выходит из канала, недостающее количество воздуха поступает в смесь для смешивания.

Принцип действия датчика холостого хода ЗМЗ 405

Кроме того, ЭБУ получает сигналы о температуре охлаждающей жидкости и масла в системе. При запуске в холодное время года необходимо прогреть двигатель до рабочей температуры, чтобы снизить износ деталей трения, поэтому канал РХХ приоткрывается для обогащения смеси инжектору, даже без нажатия педали газа водителем.

В момент старта алгоритм работы следующий:

  • ключ поворачивается, включается зажигание;
  • шток выдвигается до упора, игла перекрывает байпасный канал;
  • в момент упирания штока в калибровочное отверстие компьютер отсчитывает шаги назад;
  • на обмотки подается напряжение, клапан возвращается в открытое положение.

Если датчик холостого хода ЗМЗ 405 предлагаю вам сделать следующий порядок действий:

Большая Энциклопедия Нефти и Газа

Снятие — характеристика — холостой ход

Снятие характеристики холостого хода ( XX) производится для проверки общего состояния магнитопровода и обмоток, а также паспортных данных. Характеристика представляет собой зависимость ЭДС генератора от тока возбуждения. Для снятия характеристики в цепи обмотки возбуждения устанавливается лабораторный шунт ( соответствующий максимальному току возбуждения), к которому присоединяется милливольтметр с пределами, соответствующими указанным на шунте. Напряжение на якоре измеряется вольтметром постоянного тока. [1]

Снятие характеристики холостого хода производят при включении двигателя в сеть с номинальным напряжением и частотой. При холостом ходе проверяют правильность сборки, ток холостого хода, скорость вращения, температуру подшипников, осевую игру ротора, а в двигателях с фазным ротором проверяют также работу щеточного аппарата. Амперметры включают в каждый фазный провод, и ток холостого хода определяют как среднеарифметическое из показаний этих амперметров. Ток холостого хода не должен превышать значения, указанного в расчетной записке. Причинами повышенного тока холостого хода могут быть уменьшенное число витков обмотки статора или неправильное соединение фаз, увеличенный зазор между статором и ротором или смещение ротора относительно статора в осевом направлении. [2]

Снятие характеристики холостого хода генератора и синхронного компенсатора при отсутствии трехфазной закорот-ки 3, которое позволяет одновременно испытать витковую изоляцию обмотки статора, а также определить остаточное напряжение и симметрию напряжений генератора, производится в такой последовательности. Генератор или компенсатор плавно возбуждают до напряжения, соответствующего номинальному току возбуждения, но не ниже 130 % номинального напряжения для турбогенераторов и синхронных компенсаторов и 150 % для гидрогенераторов. [4]

Снятие характеристики холостого хода генератора и СК при отсутствии трехфазной закоротки 3 ( см. рис. 53), которое позволяет одновременно испытать витковую изоляцию обмотки статора, а также определить остаточное напряжение и симметрию напряжений генератора, производится в такой последовательности. [6]

Снятие характеристики холостого хода генератора при отсутствии трехфазной закоротки 3 позволяет одновременно испытать вит-ковую изоляцию обмотки статора, а также определить остаточное напряжение и симметрию напряжений генератора и производится в такой последовательности. [8]

Снятие характеристики холостого хода генератора производят при вращении генератора приводным двигателем, подавая питание на обмотку возбуждения. Последовательно обмотке возбуждения включают реостат и амперметр. [9]

Снятие характеристики холостого хода синхронного генератора производится с целью проверки соответствия электрических параметров машин гарантиям завода-изготовителя и выявления ненормальностей в машине. [10]

Снятие характеристики холостого хода генератора однофазного тока никакими особенностями не отличается, но единственным видом короткого замыкания однофазной машины является замыкание ее обоих выводов, которое при применении обмоток типа трехфазных без одной фазы эквивалентно замыканию двух фаз трехфазной машины друг на друга. [11]

Если снятие характеристики холостого хода сопровождается определением потерь холостого хода, то следует пользоваться возбуждением от постороннего источника, чтобы не осложнять определение потерь холостого хода учетом потерь, связанных с возбуждением. [12]

Для снятия характеристики холостого хода Е f ( / e) при / О ( все секции нагрузочного реостата выключены) и п — const собрать схему рис, 11 и показать ее для проверки. [13]

Перед снятием характеристики холостого хода необходимо убедиться, что щетки стоят на геометрической нейтрали. Для этого к выводам обмотки якоря, когда якорь не вращается, подключается вольтметр постоянного тока с нулем посредине шкалы, а ток в обмотке возбуждения включается и выключается. Бросок напряжения при щетках, установленных на геометрической нейтрали, равен нулю или минимален. Обычно щетки на геометрической нейтрали устанавливаются на заводе. На щеточной траверсе и щите имеются риски, фиксирующие положение нейтрали. [15]

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector