1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Характеристики турбокомпрессора с двигателем

История создания турбокомпрессора

Двигателестроители, начиная с Отто и Дизеля, всегда мечтали о максимально возможном наполнении цилиндров воздухом. Но двигатель должен был бы сам себя «надувать» сжатым воздухом, чтобы не было лишних затрат энергии. Чем больше в цилиндрах воздуха, тем больше энергии, что в итоге выливается в значительном приросте мощности и крутящего момента.

Естественно изобретатели ухватились за идею использовать энергию выхлопных газов для нагнетания воздуха. Хотя все это звучит просто, но прошло много лет до того как эту идею смогли реализовать — турбокомпрессоры появились спустя сто лет после изобретения двигателя внутреннего сгорания.

Первым кто описал и запатентовал принцип работы турбокомпрессора был Альфред Бюхли в 1905 году. Инженеры никогда не сталкивались с нехваткой воздуха, ведь даже совсем небольшой компрессор может передать большое количество воздуха. Проблема была в другом, а именно в том, как контролировать давление наддува между переключениями передач. Первоначально турбокомпрессоры устанавливались на самолеты и корабли. На этих транспортных средствах обороты двигателя изменяются плавно. Затем стали устанавливать турбокомпрессоры на дизельные двигатели. В 50 годы нашего столетия стали устанавливать турбины на гоночные автомобили, где скорость была примерно постоянна. В те же годы инженеры General Motors оснастили турбодвигателями и серийные модели, но тут же обнаружились «подводные камни». При разгоне с малых оборотов компрессор реагировал очень медленно. Это я вление назвали «Турболагом» или «Турбоямой». На больших оборотах турбонагнетатели давали слишком большое давление.

К концу 60-х годов инженер из Швейцарии Михаэль Мэй выдвинул идею, о том, что турбокомпрессоры нужно делать маленьких размеров, тогда они будут подавать меньшее количество воздуха с одной стороны, а с другой стороны маленький агрегат имел малый вес, и поэтому обладал меньшей инертностью и быстрее реагировал на изменение скорости.

В это же время фирма Porsche тоже заинтересовалась идеей турбокомпрессора. Они совместно с фирмой ККК в начале 70-х годов и положили начало эры турбокомпрессоров в автомобилестроении. В турбодвигателях при нажатии на педаль акселератора давление должно было резко возрастать, а при отпускании педели — резко падать. Поступили следующем образом: когда давление становилось большим выхлопные газы перепускались мимо турбины. Когда дроссельная заслонка закрывается, стравливаются выхлопные газы. При этом крыльчатка турбокомпрессора еще вращается, но не в полную силу. Когда же давление наддува снова будет необходимо, перепускной клапан закрывается, и турбина быстрее раскручивается.

Было еще много других проблем, например температура в турбокомпрессорах бензинового двигателя достигает 1000 градусов, но все эти проблемы были решены, и в наше время турбокомпрессоры честно служат на пользу человечества.

Есть ли тот кто ни когда не слышал волшебное слово «турбо»? Звенит в ушах, воображение рисует нечто мощное, стремительное. На этом фоне как-то скучно звучат термины «механический компрессор» или, хуже того — «объемный нагнетатель». На деле — совсем не так.

Какой водитель не мечтал о том что бы в его автомобиле жило намного больше лошадок под капотом чем есть.. Благо последнее время данную проблему довольно легко решить, вариантов увеличения мощности двигателя, да и комплектующих полно. В нашу жизнь плотно вошло слово «тюнинг» и многие тюнинговых ателье берутся сделать с вашим любимцем все, что угодно.

В русский язык с давних пор вошел термин «форсировка» (от английского force — сила), который означает «увеличение мощности». Стоит вспомнить, что мощность двигателя напрямую связана со следующими его основными параметрами:

  • рабочим объемом цилиндров;
  • количеством подаваемой топливо-воздушной смеси;
  • эффективностью ее сжигания;
  • энергетической «заряженностью» топлива.

Стоит заметить, что есть ещё несколько вариантов увеличения мощности — полировка впускного/выпускного каналов, применение фильтров нулегого сопротивления, применение прямоточной системы выхлопа, модификация параметров программного обеспечения (чип-тюнинг), расточка цилиндров или переходе с бензина на «нитру» (закись азота).

Такие решения позволяют увеличить мощность, но не существенно, разве что это не касается «нитроса». Главное решение одно — увеличение подачи топливо-воздушной смеси. Чем больше топлива сжигается в единицу времени, тем выше мощность мотора. Но бензин не горит «просто так», для этого нужен воздух (кислород) — во вполне определенных количествах. Чтобы увеличить подачу топлива, вначале придется соответствующим образом усилить подачу воздуха. Сам мотор с этой задачей не справится — его вероятности по всасыванию воздуха ограничены (даже при применении фильтров с нулевым сопротивлением). Поэтому и появились те самые «турбо», «компрессоры» и «нагнетатели». Они разные, и дают разнообразные результаты.

Для начала немного турбо-теории:

Представим себе такт впуска двигателя внутреннего сгорания: мотор работает как насос, к тому же весьма неэффективный — на пути воздуха (горючей смеси) находится воздушный фильтр, извилины впускных каналов, в бензиновых моторах — еще и дроссельная заслонка. Все это снижает наполнение цилиндра. Что же сделать, чтобы его повысить? Поднять давление перед впускным клапаном — тогда горючей смеси (для дизелей — воздуха) в цилиндре будет больше. Энергия сгорания заряда с большим количеством топлива, само собой, повысится; вырастет и общая мощность двигателя.

Для этих целей существует много решений, но распространение получили не многие.

1. Роторный нагнетатель Roots. Создан Фрэнсисом Рутсом еще в 1860 году. Первоначально применялся как вентилятор для проветривания промышленных помещений. Суть : две вращающиеся в противоположных направлениях прямозубые «шестерни», помещенные в общий кожух (напоминает современный маслонасос). Объемы воздуха в пространстве между зубьями шестерен и внутренней стенкой корпуса благополучно доставляются от впускного коллектора до выпускного. В 1949 году другой американский изобретатель — Итон — усовершенствовал конструкцию: прямозубые «шестерни» превратились в косозубые роторы, и воздух теперь перемещался не поперек их осей вращения, а вдоль. Принцип работы — воздух внутри агрегата не сжимается, а просто перекачивается в другой объем, отсюда и название — объемный нагнетатель, а не компрессор.

2. Спиральный компрессор Lysholm. Автор идеи — немецкий инженер Кригар, время рождения — конец позапрошлого века, первоначальное назначение — промышленное, сейчас известен под именем Lysholm благодаря работам шведского инженера Алфа Лизхолма, который в конце 30-х годов прошлого века приспособил конструкцию для автомобильного применения. Внешне — если не снимать кожух — очень похож на нагнетатель Roots. Отличия внутри. Вроде бы те же два ротора, вертящиеся навстречу друг другу перекачивают объемы воздуха вдоль осей, но сильно лихо закручены. Сечения роторов намного сложнее, они разные. Самое главное: шаг закрутки роторов меняется по длине, и при перемещении вдоль осей объем перекачиваемого воздуха в каждой ячейке уменьшается — воздух сжимается. Поэтому Lysholm — не просто нагнетатель, а чистой воды компрессор.

3. Центробежный компрессор (устоявшегося «фирменного» названия не имеет). В корпусе-улитке вращается крыльчатка сложной формы. Воздух затягивается по центру и отбрасывается по периферии, при этом благодаря действию центробежных сил происходит его сжатие. По этому это не просто нагнетатель, а тоже компрессор.

4. Турбокомпрессор, оно же турбонагнетатель. По сути, это тот же центробежный компрессор, но с другой схемой привода. Это самое важное, можно сказать, принципиальное отличие механических нагнетателей от «турбо», пусть даже и «би…», и «твин…». Именно схема привода в значительной мере определяет характеристики и области применения тех или иных конструкций. У турбокомпрессора крыльчатка-нагнетатель находится на одном валу с крыльчаткой-турбиной, которая встроена в выпускной коллектор двигателя и приводится во вращение отработавшими газами. Прямой связи с коленвалом двигателя нет, и управление подачей воздуха осуществляется за счёт давления отработавших газов, так сказать, по второй производной. Для данной конструкции присуща замедленная реакция на быстрый «подхват».

Механический нагнетатель/компрессор — роторный, спиральный или центробежный — имеет механический привод, который осуществляется ремнем от коленвала двигателя (иногда через промежуточные шкивы). Здесь главное, что бы обороты нагнетателя/компрессора жестко связаны с оборотами коленвала.

Нагнетатель Roots и компрессор Lysholm

Нагнетатель Roots, и компрессор Lysholm имеют линейные характеристики, обороты компрессора повышаются синхронно с оборотами коленчатого вала, пропорционально растет подача воздуха, и кривая крутящего момента двигателя, практически не меняя свою форму, размеренно перемещается вверх. У центробежного и турбокомпрессоров характеристики нелинейные — их производительность увеличивается с ростом числа оборотов. Поэтому установка того или иного агрегата по-разному меняет характеристики (кривые мощности и крутящего момента) двигателя.

Оба типа компрессоров весьма эффективны с самых низких оборотов, но Lysholm обеспечивает более плоскую характеристику на высших, у Roots ее спад начинается несколько раньше. К преимуществам Lysholm можно отнести и более высокий КПД, и лучшее соотношение габариты/масса, к тому же он меньше нагревается при работе. Рабочая частота вращения обычно 12-14 тыс. оборотов, но может доходить до 25 тыс. об./мин. (Стоит заметить что компания Mercedes- Benz одна из первых начала использовать компрессора в своих автомобилях, при чем предпочтение они отдали именно роторным конструкциям.)

Роторы Lysholm с их сложной формой требуют высочайшей точности изготовления — компрессоры этого типа появились на рынке заметно позже других. Главные их производители — шведские компании Lysholm и Autorotor. Известны потребителю фирмы Kleemann, Whipple и пр. в основном поставляют готовые комплекты на шведской основе, разработанные для конкретных двигателей. Комплекты включают интеркулер, систему привода, входной коллектор, переходники и разную мелочевку…

Механический нагнетатель

Механические нагнетатели применялись в автомобильных двигателях еще в 30-е годы, тогда их чаще всего называли компрессорами. Сейчас этот термин обычно относят к турбокомпрессорам, о которых речь пойдет ниже. Конструкций механических нагнетателей довольно много, и интерес к ним разработчики проявляют до сих пор. На рисунках 1-4 представлены схемы некоторых устройств, принцип работы которых не требует дополнительных пояснений.

Возможности использования турбокомпрессоров

Турбокомпрессором может быть оснащен любой двигатель внутреннего сгорания, дизельный, бензиновый или работающий на газе, имеющий жидкостное или воздушное охлаждение. Турбокомпрессоры используются на двигателях как с большим рабочим объемом (судовых, тепловозных и стационарных), так и на двигателях грузовых и легковых автомобилей. Также не имеет никакого значения, идет ли речь о 2-тактном или о 4-тактном двигателе.

В настоящее время практически все большие дизельные двигатели мощностью более 150 кВт, используемые в промышленности, судостроении, на дорожно-строительных работах, оснащаются турбокомпрессором.

Устройство турбокомпрессора (рис. 1) включает в себя три основные части — корпус турбины, корпус подшипников с ротором в сборе и корпус компрессора.

Корпуса турбины и компрессора в обиходе называют «улитки». Турбинный корпус связан с выпускным, а компрессорный — с впускным трубопроводами.

В корпусе подшипников установлен ротор в сборе, представляющий собой вал, на котором жестко закреплены турбинное и компрессорное колеса с лопастями. Ротор вращается на подшипниках скольжения. Они смазываются и охлаждаются моторным маслом, поступающим из системы смазки двигателя. Для снижения температуры корпуса в нем могут быть предусмотрены каналы подачи охлаждающей жидкости.

Ограничение давления наддува осуществляют с целью защитить двигатель от перегрузки.

Перепускной клапан, управляемый пневматическим приводом (см. рис. 1), при определенной величине давления наддува направляет часть отработавших газов в обход турбины.


Рис 1. Устройство турбокомпрессора:
1 — корпус подшипников; 2 — турбинное колесо; 3 — перепускной клапан; 4 — корпус турбины; 5 — масляные каналы; 6 — вал ротора; 7 — подшипник скольжения; 8 — компрессорное колесо; 9 — корпус компрессора; 10 — пневмопривод перепускного клапана

Поворотные лопатки, установленные в корпусе турбины некоторых компрессоров, позволяют изменять ее проходное сечение и соответственно давление наддува (рис. 2).

Рис. 2. Турбокомпрессор с изменяемым проходным сечением корпуса турбины:
1 — турбинное колесо; 2 — поворотные лопатки

Работа турбокомпрессора происходит под воздействием потока отработавших газов, вращающих турбинное колесо и вал ротора. Установленное на том же валу компрессорное колесо нагнетает воздух во впускной трубопровод. На некоторых режимах работы мотора проявляют себя особенности турбонаддува.

«Турбояма» (турболаг) — задержка увеличения оборотов и мощности двигателя при резком нажатии на педаль акселератора («газа»). Эффект связан с инерционностью системы — требуется время, чтобы ускорившийся поток выхлопных газов раскрутил турбину. Основной способ устранения — снижение размеров и массы вращающихся деталей для облегчения их быстрого раскручивания. Однако это ведет к снижению производительности турбокомпрессора и для сохранения необходимого давления наддува приходится увеличивать частоту вращения ротора или применять корпус турбины с изменяемым проходным сечением.

«Турбоподхват» возникает при увеличении оборотов и скорости движения выхлопных газов после преодоления «турбоямы». Вследствие этого резко увеличивается давление наддува, создаваемого турбокомпрессором и, соответственно, мощность двигателя. Чтобы исключить перегрузку деталей кривошипно-шатунного механизма и детонацию (в бензиновых двигателях), необходимо такое же резкое ограничение давления наддува.

Основные причины преждевременного выхода из строя турбокомпрессора связаны с ухудшением смазки подшипников ротора, загрязнением масла и попаданием в лопасти колес посторонних предметов.

Недостаток масла, смазывающего подшипники, вызывает его перегрев и коксование на трущихся поверхностях, наволакивание металла на ось ротора, интенсивный износ сопрягаемых деталей. Происходит увеличение осевого и радиального зазоров ротора и задевание лопастей колес за корпус. Повышенная температура отработавших газов, например при неправильно установленных моментах зажигания и впрыска, ускоряет этот процесс.

Загрязнение поступающего масла продуктами износа двигателя и плохая его фильтрация вызывают образование задиров на рабочих поверхностях подшипников и ротора и их ускоренный выход из строя. Последствия аналогичны описанным выше.

Повреждение компрессорного колеса возможно при попадании посторонних предметов на его лопасти в случае разгерметизации трубопровода между воздушным фильтром и турбокомпрессором.

Повреждение турбинного колеса происходит при попадании кусочков окалины со стенок выпускного трубопровода или мелких обломков клапанов, поршневых колец и поршней двигателя.

В связи с тем, что частота вращения ротора очень велика, малейшее нарушение динамической балансировки при деформации лопастей колес вызывает биения и выход узла из строя.

Признаки неисправности турбокомпрессоров представлены в таблице.

Наиболее распространенные ремонтные операции:

Турбокомпрессор собирается, окончательно балансируется и проверяется на отсутствие утечек масла с помощью специального «горячего» стенда, на котором создаются условия работы, как на двигателе.

Установку на автомобиль отремонтированного турбокомпрессора надо доверять специалистам, так как гарантия на работоспособность восстановленного узла сохраняется только при обязательном выполнении следующих операций:удаляют все загрязнения из впускного и выпускного трубопроводов:

Турбонаддув двигателя: описание и принцип работы

Каждый двигатель автомобиля обладает множеством характеристик. С течением времени технологии совершенствуются, а значит, качество мотора улучшается. Интересным решением является применение системы принудительного нагнетания воздуха в камеру сгорания. Речь пойдет о том, как работает турбонаддув, какие существуют виды систем, а также какими преимуществами и недостатками он обладает.

История

Многие думают, что турбированные моторы появились не так давно. Но это, на самом деле, произошло в XX веке. В 1911 году американский изобретатель А. Бюхи получил официальный патент на промышленное производство системы, которое позволило увеличивать мощность мотора в несколько раз.

Несмотря на то, что Альфред Бюхи понял, как правильно «сжимать» воздух на впуске, на практике этот процесс впервые начал работу в момент, когда фирма General Electric приступила к экспериментам с газовым наддувом. Через 10 лет турбонагнетателем оснастили двигатель Liberty на биплане. Ему удалось тогда подняться на высоту более 10 км.

Первые турбины давали хорошую прибавку к мощности, но были очень громоздкими. Они увеличивали и так большой вес автомобилей. По этой причине дальнейшее распространение турбонаддува не пошло. Например, в Америке не спешили встраивать ее в выпускаемые машины.

Система турбонаддува использовалась в европейских странах. В те годы как раз нагрянул бензиновый кризис. Снизить объем двигателя и повысить его мощность помогал турбонаддув. Со временем система подвергалась совершенствованию, но проблема большого расхода топлива оставалась. Решить ее удалось только в 1970 году, когда компания Мерседес представила авто с дизельным двигателем с турбонаддувом. Теперь расход топлива был снижен, поскольку дизельный агрегат оказался не таким «прожорливым».

Кстати, турбокомпрессоры использовались в авиационном строительстве еще до Второй Мировой войны. Немного позже их устанавливали на пассажирских лайнерах. Таким образом, можно сказать, что турбонаддув появился в прошлом веке, но свою заслуженную популярность получил лишь через 100 с лишним лет.

Устройство

Турбонаддув сегодня используется на разных типах двигателя, в том числе на бензиновых и на дизельных. Чаще система используется все-таки на дизельном моторе, он обладает высокой степенью сжатия и низкими оборотами коленвала.

Что касается бензиновых двигателей, то в них t отработанных газов выше. Это способно произвести эффект детонации, то есть спровоцировать ускоренный износ поршневой группы. Это явление возможно предотвратить.

Система турбонаддува включает в себя множество важных элементов. Основной элемент — нагнетатель. Его также еще именуют как турбинный компрессор. Он функционирует в системе впуска, увеличивая давление воздушной массы.

Сам компрессор состоит из колес (турбинного и компрессорного). Первый предназначен для переработки энергии, второй — для всасывания воздушной массы, а затем для ее сжатия и нагнетания. Еще одним важным элементом является интеркулер и регулятор давления наддува.

Как работает?

Рассмотрим принцип работы турбонаддува подробнее. Система функционирует на энергии отработанных газов. Они вращают турбинное колесо, которое, в свою очередь, крутит компрессорное. Оно сжимает воздух, а затем он охлаждается в интеркулере и переходит в цилиндры «движка».

Эффективность функционирования системы зависит от оборотов мотора. Получается, что чем больше происходит вращения коленвала, тем больше энергия газов, быстрее крутится турбина и большое количество сжатого воздуха уходит в цилиндры.

У турбонаддува есть некоторые отрицательные «стороны». К ним относят «турбояму» и «турбоподхват». Первый возникает при резком «старте» при задержке увеличения мощности «движка». Второй появляется при увеличении давления после преодоления турбоямы.

Если водитель знает, как функционирует классический двигатель внутреннего сгорания, то ему не составит труда разобраться в процессе подачи дополнительного воздуха в цилиндры. Получается, что при включении турбонаддува происходит увеличение мощности мотора при стандартных объемах.

Особенности эксплуатации ТД

Поняв принцип действия турбонаддува, водитель должен уяснить для себя правила эксплуатации агрегата. При соблюдении рекомендаций «срок жизни» мотора увеличится.

Особенности эксплуатации следующие:

Проверка уровня масла — самое главное условие при эксплуатации турбодвигателей. Если наблюдается отсутствие смазки, то это приводит к быстрому износу подшипников турбины.

Правильный нажим на педаль газа — ТД достигают максимальных оборотов уже сразу после запуска, поэтому удерживать педаль газа долго не следует.

Качественное масло — турбина быстро изнашивается также из-за некачественного масла. Это также негативно отражается на состоянии мотора.

Проверка двигателя после проведения ремонта — жидкость должна быть прозрачной, а сам «движок» — не издавать посторонних звуков.

Доводить двигатель до больших оборотов. Турбина должна постоянно работать, иначе она перестанет нормально функционировать. Именно поэтому раз в неделю необходимо включать двигатель на высокие обороты.

Для дизельных двигателей следует использовать только качественное топливо. Низкосортные жидкости засоряют топливную систему, снижая уровень мощности двигателя.

При низких значениях t смазка превращается в вязкое вещество. Именно поэтому во время мороза двигатель должен поработать на «холостом» ходу, чтобы жидкость зациркулировала внутри агрегата.

Виды систем

Существует несколько типов системы турбонаддува. К первому типу относят VGТ и VNT турбины. Их по-другому называют турбинами с изменяемой геометрией.

Первый вид разрабатывался известной в то время фирмой BorgWarner, второй -фирмой Garrett. Их принцип действия довольно прост. Направление, скорость потока отработанного газа регулируется через изменения площади входного канала.

Второй тип называется Twin Turbo или двойное турбо. Две турбины позволяют сгладить инерцию и избежать задержки. Контроль происходит через датчики и ЭСУД. Эта конструкция бывает трех разных видов:

1. Параллельная — 2 турбины зажигаются одновременно. Отходящие газы после сжимания уходят во впускной коллектор, и уже оттуда идет распределение по цилиндрам.

2. Последовательная — 2 компрессора с одинаковой конфигурацией соединены с двигателем. Первый компрессор работает в непрерывном режиме, а второй только настраивается на рабочий режим.

3. Ступенчатая — 2 разных компрессора подключаются на впускной и выпускной каналы. Существует также третий тип системы, который именуется как комбинированный (Twincharger). Соединение механического и турбонаддува создает комбинированный наддув.

Таким образом, существует три основных типа систем. Каждый из них обладает определенными функциями.

Турботаймер

Турботаймер — это электронное устройство, помогающее увеличить срок работы автотурбины. Иными словами, он является специальным контроллером, который заглушает двигатель через время после удаления ключа зажигания из замка. Все это время агрегат работает на холостом обороте. Турботаймер устанавливают под торпедо и подключают к замку зажигания.

Турботаймер дает возможность турбине остывать в условиях повышенной температуры. Охлаждение происходит с помощью машинного масла. Если двигатель перестает функционировать, то подача смазки-охладителя останавливается. Это все приводит к тому, что детали выходят из строя.

Автолюбители, которые постоянно эксплуатируют турбированные моторы на больших оборотах, сначала заставляют турбину работать вхолостую, и только потом выключают зажигание. Турбина остывает самостоятельно, но если использовать турботаймер, то сидеть и ждать в машине охлаждения не потребуется. Можно вытащить ключ из замка, а затем электроника сама заглушит мотор.

Если человек оставит турботаймер работающим, а сам покинет салон, то другой человек не сможет угнать машину. Устройство блокирует управление. Если человек захочет уехать на автомобиле, то сработает сигнализация.

Плюсы и минусы системы

Турбонаддув, как и любой элемент автомобильной системы, имеет преимущества и недостатки.

К преимуществам относятся:

Дополнительная мощность. Считается, что установка доптурбины на выпускном коллекторе ДВС придает дополнительную мощность. Это поможет получить еще один источник энергии для турбонаддува. Нельзя называть ее «бесплатной» энергией. Ее можно назвать «дешевой дополнительной энергией».

Оптимизация соотношения массы «движка» и веса. Переход на турбонаддув помог отказаться от увеличения количества и объема цилиндров с целью увеличения мощности мотора.

Экономичность. При сравнении удельного расхода топлива и атмосферного двигателя с той же мощностью можно понять, что преимущество у первого типа. Это объясняется тем, что за один цикл тратиться меньше топлива.

Что касается недостатков, то их не так много, как кажется. Во-первых, самым основным «минусом» системы является «турбояма». Это явление представляет собой процесс, который при разгоне с небольших оборотов выдает вялую динамику, вместо ускорения. Это обуславливается тем, что турбонаддув работает в тесной связи с частотой вращения коленчатого вала. Эффективности от наддува совершенно не будет, если величина окажется невысокой.

Вторым недостатком считается повышенная температура. Сжатие воздуха связывают с нагревом, что отрицательно сказывается на функционировании движка. Именно из-за этого приходится вводить систему охлаждения дополнительно. Турбонаддув, несмотря на свои недостатки, является отличным способом для достижения высоких показателей экономичности и мощности.

Характеристики турбокомпрессоров

Для того, чтобы ознакомиться с техническими характеристиками турбокомпрессора для начала стоит узнать, что собой представляет данное устройство.

Если говорить простыми словами, то это турбина, которая расходует выхлопные газы для того, чтобы увеличить давление. Оно повышается в части под названием впусковая камера.

Такой процесс обеспечивает правильную работу всех необходимых систем. Если понадобится замена турбины, то обращаться нужно только к специалистам.

Преимущества устройства

Как и множество различных технических моделей, турбокомпрессор имеет ряд преимуществ, с которыми необходимо ознакомиться перед изучением характеристик.

Данное устройство отличается такими особенностями:

  • использует ненужную двигателю энергию;
  • не отнимает мощность у двигателя путем работы собственной системы;
  • более эффективные и мощные, по сравнению с механическими моделями;
  • повышает работу двигателя в несколько раз.

Как становится понятно, турбокомпрессоры работают намного лучше и являются эффективнее, чем механические устройства подобного типа.

Стоит отметить, что данная модель компрессора может повысить мощность двигателя практически на половину (около 40%), что действительно радует. Они являются наиболее экономичным вариантом, поэтому используются чаще, чем механические устройства.

Тем, кто не знаком с такими компрессорами стоит знать, что лучше всего использовать модель небольших размеров. Это связано с тем, что при работе двигатели большого размера расходуют большое количество тепловой энергии.

Еще одним плюсом можно отметить то, что турбокомпрессоры способны работать даже в условиях, где уровень воздуха находится на пониженном уровне (например, высокогорье).

Технические характеристики

Стоит отметить, что у таких агрегатов есть свои технические характеристики, которые могут быть не всегда приятными при работе.

Например, им присущ эффект под названием «турбояма», который иногда создает неприятности во время езды. Это связано с тем, что иногда механический вид связи между компрессором и двигателем может быть нарушен, по причине ослабления мощности, которую требует водитель.

Такую проблему можно решить с помощью замены клапанов, которые и контролируют нужное давление во время работы. Они позволяют снизить тот негативный эффект, который возникает во время задержки компрессора.

Иногда могут возникать проблемы с работоспособностью самого устройства. Технические характеристики некоторых моделей не рассчитаны на высокую оборотность двигателя во время работы, и часто в результате этого могут возникнуть небольшие проблемы.

В последнее время на данную техническую особенность уже обратили внимание многие специалисты, поэтому в некоторых моделях эта функция уже налажена и таких неприятностей не возникает.

Для того, чтобы эффективность компрессора повысилась, ему нужно вращаться с большей скоростью, чем это делает центрифуга. В некоторых же устройствах существует недостатки в технических характеристиках.

Принцип работы турбокомпрессора:

Понравилась запись? Поделись с друзьями и поддержи сайт:

Ссылка на основную публикацию
Adblock
detector