Что воспламеняется в дизельном двигателе
Дизельные двигатели — принцип работы, особенности эксплуатации и обслуживания
Дизельные силовые установки представляют собой довольно сложную конструкцию. Главное отличие от бензиновых заключается в принципе приготовления топливной смеси и воспламенении горючего. Образуется смесь в камере сгорания, а такт работы представляет собой впрыск порции под большим давлением. Возгорание происходит из-за сильно разогретого воздуха. Такая технология позволяет убрать из конструкции бензонасос, свечи зажигания, высоковольтные провода и остальные элементы, которые используются в бензиновом моторе.
Преимущества. Силовые агрегаты, которые работают на дизельном топливе, имеют большое количество преимуществ:
1) Экономичность. КПД таких двигателей составляет 40%, при наличии наддува — 50%;
2) Мощность. При эксплуатации турбированных дизельных моторов не встречается турбояма, а крутящий момент становится доступным при низких оборотах;
3) Надежность. Эксплуатироваться такие моторы могут до 700 000 км;
4) Экологичность. Применение технологии EGR и меньший объем углекислого газа в выхлопе позволяет сократить вред окружающей среде.
Заправка. Главная особенность таких моторов заключается в придирчивости к качеству топлива. Специалисты рекомендуют проводить проверку дизеля перед тем, как залить его в систему. Если внутри есть вода, это представляет опасность для установки. Она может провоцировать коррозию в топливной системе. Чтобы проверить топливо, нужно залить его в емкость и дать отстояться, чтобы примеси и осадок сели на дно.
Можно проверить, есть ли в дизеле вода. Для этого следует отлить небольшое количество топлива в емкость и добавить марганцовку. Если внутри есть вода, то вокруг кристаллов марганцовки образуются красящие разводы.
Обслуживание. Чтобы дизельный мотор прослужил большой срок, нужно внимательно подходить к обслуживанию. Существует несколько рекомендаций, которые помогут держать двигатель в порядке:
1. Замена и контроль масла. Проводить замену технической жидкости нужно чаще, чем указывает производитель. Условный интервал — 7000-7500 км.
2. Замена ремня ГРМ. Нужно руководствоваться таким же принципом, что и с маслом У многих моторов ремень может прослужить примерно 100 000 км. Но нужно учитывать, что этот показатель относится к эксплуатации в стерильных условиях на ровных дорогах. Если ремень оборвется, нужно будет менять вместе с ним головку блока цилиндров.
3. Чистота топливной системы. Менять фильтр следует не реже одного раза в 10 000 км. Из фильтра следует регулярно убирать осадок. Топливный бак тоже нуждается в промывке, делать это нужно 2 раза в год.
Особенности эксплуатации. Первый вопрос — езда на холодную. Эксплуатация дизельных моторов допускает такую возможность, но нужно учитывать поведение конструкции. Тепловые зазоры в этот момент увеличены, а масло утрачивает свойства, что приводит к преждевременному износу деталей. Оптимальное движение — на 2 или 3 передачи и скорости 40 км/ч.
Обороты. Дизельный мотор можно назвать низкооборотным. Не стоит крутить их выше 3500, так как это приведет к быстрому износу цилиндро-поршневой группы. Оптимальный диапазон — 1600-3200 оборотов.
Воздушный фильтр. У дизельных моторов отсутствует дросселирование на впуске. Если учитывать маленький объем камеры сгорания и высокие втягивающие свойства, можно прийти к одному выводу — попадание даже минимального количества воды в фильтр может спровоцировать гидроудар.
Эксплуатация зимой. В холодное время года использование таких автомобилей усложняется. В таких случаях нужно применять специальное топливо — зимнее или арктическое. Особое внимание следует уделять форсункам. Лучше всего в зимнее время оставлять автомобиль в гараже, чтобы не допустить кристаллизацию парафинов в топливе.
Итог. Дизельные двигатели отличаются по конструкции и принципу действия от бензиновых. Поэтому они требуют особого ухода и соблюдения некоторых правил при эксплуатации.
Устройство автомобилей
Смесеобразование в дизелях
Как известно, для того, чтобы топливо сгорело и выделило теплоту, необходим кислород, поскольку горение — это процесс окисления топлива (горючего вещества), т. е. соединения его с кислородом. И если кислорода будет недостаточно, то даже самое пожаро- и взрывоопасное горючее вещество гореть не будет.
Вся эта философия в полной мере относится и к тепловым двигателям. Чтобы топливо в камере сгорания начало гореть, необходим кислород, который в нашем случае подается в цилиндры с атмосферным воздухом.
Но и это еще не все. Топливо в цилиндрах должно сгорать очень быстро, иначе то, что не успело сгореть «вылетит в трубу» в буквальном смысле этого слова.
Скорость горения напрямую зависит от того, насколько быстро и качественно мы перемешаем воздух с топливом в цилиндре перед воспламенением.
Процесс перемешивания топлива с воздухом перед сгоранием этой смеси называется смесеобразованием . Качественное смесеобразование — залог эффективной и экономичной работы любого теплового двигателя.
В карбюраторных двигателях бензин перемешивается с воздухом сначала в карбюраторе, затем во время перемещения по впускному коллектору мимо впускного клапана в цилиндр, а также в течение тактов впуска и сжатия. В дизелях этому важнейшему процессу отводится чрезвычайно короткий миг — в камеру сгорания дизельных двигателей топливо подается в конце такта сжатия за 10…20 ˚ угла поворота коленчатого вала до верхней мертвой точки (ВМТ). При этом оно подается в цилиндр не в смеси с воздухом, как в карбюраторном двигателе, а впрыскивается в «чистом виде», и лишь в цилиндрах оно получает возможность «встретиться» с кислородом воздуха, чтобы быстро перемешаться, сгореть и выделить тепло.
Время, отводимое на смесеобразование и сгорание смеси в дизелях примерно в пять-десять раз меньше, чем в карбюраторных двигателях и составляет не более 0,002…0, 01 секунды.
Поскольку сгорание происходит достаточно быстро, дизель работает «жестко» — в два-три раза жестче бензинового двигателя.
Следует отметить, что жесткость работы двигателя — измеряемый параметр (Ж = dp/dφ) – это скорость нарастания давления (dp) по углу поворота (dφ) коленчатого вала, поэтому ее можно рассчитать.
Несмотря на быстротечность сгорания в дизелях, его условно разделяют на четыре фазы, первая из которых называется периодом задержки воспламенения (0,001…0,003 сек). В это время происходит распад впрыскиваемого топлива на мельчайшие капли, которые, продвигаясь по камере сгорания, испаряются и смешиваются с воздухом, а также разгон химических реакций самовоспламенения. Следующие три фазы – фазы горения топливовоздушной смеси.
Если период задержки воспламенения оказывается продолжительным, то значительная часть топлива успевает испариться и смешаться с воздухом. В результате одновременного воспламенения этой части по всему объему возникает резкое повышение давления в камере сгорания (жесткая работа) с ростом динамических нагрузок на детали и повышение уровня шума.
Поэтому длительный период задержки самовоспламенения не желателен. Он зависит от температурных условий, сорта топлива, нагрузки на двигатель и других факторов. Однако внутреннее смесеобразование в дизелях всегда определяет более жесткую работу по сравнению с карбюраторными двигателями.
Так как время на смесеобразование в дизеле очень мало, то для более полного сгорания топлива в его цилиндры воздуха вводят больше, чем в бензиновых двигателях (кроме инжекторных двигателей использующих непосредственный впрыск, где воздуха тоже впускают чуть больше нормы). Коэффициент избытка воздуха α в дизельных двигателях составляет от 1,4 до 2,2.
Таким образом, к смесеобразованию дизелей предъявляются высокие требования. Оно должно обеспечить равномерное перемешивание топлива с воздухом, постепенное сгорание топлива во времени, полное использование всего воздуха в камере сгорания при минимально возможном значении α , а также максимально мягкую работу дизеля.
Способы улучшения смесеобразования
Большинство задач повышения качества смесеобразования в дизельных двигателях во многом решаются путем выбора формы камеры сгорания.
Различают неразделенные камеры сгорания (однополостные) (рис. 1а, б ) и разделенные (рис. 1,в ).
Неразделенные камеры сгорания представляют собой камеру, образованную днищем поршня, когда он находится в ВМТ, и плоскостью головки цилиндров. Неразделенные камеры сгорания применяют в основном в дизелях тракторов и грузовых автомобилей. Они позволяют повысить экономичность двигателя и его пусковые качества (особенно холодного двигателя).
Разделенные камеры сгорания имеют основную и вспомогательную полости, соединенные каналом 11. Вспомогательная камера может быть не только сферической, как показано на рис. 1, в , но и цилиндрической.
В первом случае она называется вихревой (дизели Д-50, СМД-114), во втором – предкамерой или, как ее чаще называют — форкамерной (КДМ-100).
Вихревая камера работает следующим образом. В головке цилиндров имеется шаровая полость – вихревая камера, соединенная каналом с основной камерой сгорания над поршнем. При движении поршня вверх во время сжатия воздух с большой скоростью входит в вихревую камеру по касательной к ее стенкам.
В результате этого поток воздуха закручивается со скоростью до 200 м/с. В этот раскаленный (700…900 К) воздушный вихрь форсунка впрыскивает топливо, которое воспламеняется и давление в камере резко возрастает.
Газы с недогоревшим топливом по каналу выбрасываются в основную камеру, где происходит догорание оставшегося топлива. Объем вихревой камеры составляет 40…60% общего объема камеры сгорания, т. е. примерно половину объема.
Предкамерные (форкамерные) двигатели имеют камеру из двух частей. Топливо впрыскивается в цилиндрическую предкамеру (форкамеру), и часть его (до 60%) воспламеняется. Процесс горения топлива протекает так же, как и в вихревой камере.
Разделенные камеры сгорания менее чувствительны к составу топлива, работают в широком диапазоне частот вращения коленчатого вала, обеспечивают более качественное смесеобразование и менее жесткую работу путем сокращения периода задержки воспламенения.
Однако их основным недостатком является затруднительный пуск двигателя и увеличенный расход топлива по сравнению с неразделенными камерами сгорания.
Иногда выделяют полуразделенные камеры сгорания ( см. рис. 2 ), к которым относят камеры, образованные глубокими полостями в головке поршня. Процессы горения топливовоздушной смеси в таких камерах сходны с процессами горения в разделенных камерах, при этом впрыск топлива в полость поршня благотворно влияет на его охлаждение во время работы.
На качество смесеобразования также оказывает значительное влияние взаимное направление и интенсивность движения топливных струй и заряда воздуха в камере сгорания. В связи с этим различают объемное смесеобразование, пленочное и объемно-пленочное.
Объемное смесеобразование отличается тем, что топливо впрыскивается непосредственно в толщу раскаленного воздуха, находящегося в объеме камеры сгорания. При этом для лучшего перемешивания частиц распыленного топлива с воздухом его свежему заряду сообщают вращательное движение с помощью завихрителей или винтовых впускных каналов, а форму камеры сгорания стремятся согласовать с формой струи топлива, впрыскиваемой форсункой.
Для нормальной работы дизеля с объемным смесеобразованием требуется очень высокое давление топлива на впрыске – до 100 МПа и более. Двигатели с таким смесеобразованием достаточно экономичны, но работают жестко (Ж = 0,6…1,0 МПа/град).
Пленочное смесеобразование характеризуется тем, что большая часть впрыскиваемого топлива подается на горячие стенки шарообразной камеры сгорания, на которых образует пленку, а затем испаряется отнимая часть тепла от стенок.
Принципиальная разница между объемным и пленочным образованием заключается в том, что в первом случае частицы распыленного топлива непосредственно смешиваются с воздухом, а во втором основная часть топлива сначала испаряется, и уже в парообразном состоянии перемешивается с воздухом.
Пленочное смесеобразование используют двигатели фирмы MAN, некоторые двигатели семейства Д-120 и Д144. Этот способ обеспечивает приемлемую жесткость работы дизеля (Ж = 0,2…0,3 МПа/град) и неплохую экономичность, но требует поддержания температуры поршня в заданных пределах, обеспечивающих интенсивное испарение топливной пленки.
Объемно-пленочное смесеобразование сочетает в себе процессы объемного и пленочного смесеобразования. Такой способ смесеобразования используется, например, на отечественных двигателях ЗИЛ-645, где объемная камера сгорания располагается в поршне.
Форсунка, расположенная в головке блока, впрыскивает топливо через распылитель, имеющий два отверстия, в виде двух пылеобразных струй. Пристеночная струя направляется вдоль образующей камеры сгорания, создавая на ней тонкую пленку. Объемная струя направлена ближе к центру камеры сгорания.
Объемно-пленочное смесеобразование обеспечивает более мягкую работу дизельного двигателя (Ж = 0,25…0,4), приемлемые пусковые качества при хорошей экономичности, и применяется на большинстве современных дизелей. Выемки в поршне образуют форму камеры в виде тора (СМД, КамАЗ, ЯМЗ А-41, А-01) или усеченного конуса – дельтавидная камера (Д-243, Д-245).
Качество смесеобразования в дизельных двигателях можно повысить не только конструкцией и формой камеры сгорания. Большую роль играет технология самого процесса впрыска топлива форсункой.
Здесь конструкторы решают вопросы улучшения смесеобразования несколькими способами:
- повышением давления впрыска, благодаря чему улучшается качество распыла топливной струи (один из путей достижения данной цели – применение насос-форсунок);
- применением поэтапного (разделенного) впрыска, когда топливо в камеру сгорания подается в несколько приемов (поэтапный впрыск легко осуществить в системах питания, управляемых микроЭВМ);
- подбором распылителей для форсунок, обеспечивающих оптимальную форму распыленной струи, количество струй и их направление.
Общий принцип работы дизельного двигателя
Общий принцип работы дизельного двигателя дизельной электростанции
Главным отличием ДВС с воспламенением от сжатия (дизеля) от ДВС с воспламенением от искры (бензиновый двигатель) являются способы смесеобразования и воспламенения топливовоздушной смеси. В бензиновом двигателе топливо смешивается с воздухом до входа в цилиндр, а топливовоздушная смесь воспламеняется в определенный момент при помощи искры. В дизельном двигателе в цилиндр попадает «чистый» воздух, который затем сжимается, когда поршень идет к верней мертвой точке. Так как степень сжатия в дизельном двигателе довольно большая (обычно 20:1), воздух при сжатии нагревается до температуры 750С. При подходе поршня к верхней мертвой точке топливо начинает впрыскиваться в цилиндр под высоким давлением. Температура воздуха достаточно высокая для воспламенения впрыснутого топлива, когда оно смешается с воздухом. Топливовоздушная смесь воспламеняется, выделившаяся энергия воздействует на поршень, поршень начинает движение вниз, совершая полезную работу. Необходимо отметить, что новый бензиновый двигатель GDI от MMC имеет такой же способ смесеобразования, как и дизель.
При запуске дизельного двигателя дизельной электростанции в холодную погоду температура сжатого воздуха может быть недостаточна для того, чтобы воспламенить топливо. Поэтому на дизельных двигателях устанавливают системы предпускового подогрева воздуха. При очень низких температурах (-50 град.С) решением может быть только контейнерная дизель-генераторная установка.
Способы впрыска топлива дизельного двигателя
На практике довольно сложно добиться плавного сгорания топлива в двигателях с небольшим объемом, впрыскивая топливо непосредственного в камеру сгорания. Чтобы добиться более плавного сгорания топливовоздушной смеси были разработаны дизели с разделенными камерами сгорания: вихрекамерные и предкамерные. Дизели с разделенными камерами сгорания имеют меньший КПД и более требовательны к системе предпускового подогрева воздуха по сравнению с дизелями с непосредственным впрыском, но эти недостатки перекрываются более тихой и мягкой работой.
Шум и черный дым дизельного двигателя
За дизельными двигателями закрепился имидж шумных и дымных машин, который в общем-то верен.
Шум дизельного двигателя вызван следующим: в камере сгорания при впрыске топлива и начале его горения резко возрастает давление, которое и вызывает этот многим неприятный шум. Данный шум в общем неизбежен при работе двигателя, но за последние годы он был значительно снижен: улучшения в конструкциях камеры сгорания и форсунок, а также применение шумозащитных кожухов с низкошумными глушителями.
Повышение шумности дизеля часто бывает вызвано неисправностью форсунок.
Дымность дизеля связана с неправильным сгоранием топлива. В отличии от шума этот вопрос практически полностью решаем. Во время запуска и прогревания двигателя небольшое количество белового или голубого дыма является нормальным, но при работе под статичной нагрузкой в нормальных условиях его не должно быть. Черный дым обычно вызван недостатком воздуха: либо забит воздушный фильтр, либо впрыснуто большое количество топлива (при значительном набросе нагрузки).
Как работает дизельный двигатель
Конструкция и строение
По конструкции дизельный двигатель не отличается от бензинового — те же цилиндры, поршни, шатуны. Правда, клапанные детали усилены, чтобы воспринимать высокие нагрузки — ведь степень сжатия дизеля намного выше (19-24 единиц против 9-11 у бензинового мотора). Этим объясняется большой вес и габариты дизельного мотора в сравнении с бензиновым.
Принципиально отличие в способах формирования смеси топлива и воздуха, её воспламенения и сгорания. У бензинового мотора смесь образуется во впускной системе, а в цилиндре воспламеняется искрой свечи зажигания. В дизельном двигателе подача топлива и воздуха происходит раздельно. Вначале в цилиндры поступает воздух. В конце такта сжатия, когда он нагревается до температуры 700-800 о С, в камеру сгорания форсунками, под большим давлением впрыскивается солярка и почти мгновенно самовоспламеняется.
Смесеобразование в дизелях протекает за очень короткий промежуток времени. Для получения горючей смеси, способной быстро и полностью сгорать, необходимо, чтобы топливо было распылено на возможно более мелкие частицы, и каждая частица имела достаточное для полного сгорания количество воздуха. С этой целью топливо в цилиндр впрыскивается форсункой под давлением, в несколько раз превышающим давление воздуха при такте сжатия в камере сгорания.
В дизелях применяют неразделенные камеры сгорания. Они представляют собой единый объем, ограниченный днищем поршня 3 и поверхностями головки и стенок цилиндров. Для лучшего перемешивания топлива с воздухом форму неразделенной камеры сгорания приспосабливают к форме топливных факелов. Углубление 1 , выполненное в днище поршня, способствует созданию вихревого движения воздуха.
Мелко распыленное топливо впрыскивается из форсунки 2 через несколько отверстий, направленных в определенные места углубления. Чтобы топливо полностью сгорало и дизель обладал наилучшими мощностями и экономическими показателями, топливо нужно впрыскивать в цилиндр до прихода поршня в ВМТ.
Самовоспламенение сопровождается резким нарастанием давления — отсюда повышенная шумность и жесткость работы. Такая организация рабочего процесса позволяет работать на очень бедных смесях, что определяет высокую экономичность. Экологические характеристики тоже лучше — при работе на бедных смесях выбросы вредных веществ меньше, чем у бензиновых моторов.
Типы дизельных двигателей
Существует несколько типов дизельных моторов. Различие в конструкции камеры сгорания. В дизелях с неразделенной камерой сгорания — их называю дизелями с непосредственным впрыском — топливо впрыскивается в надпоршневое пространство, а камера сгорания выполнена в поршне. Непосредственный впрыск применяется на низкооборотных двигателях большого рабочего объема. Это связано с трудностями процесса сгорания, а также повышенным шумом и вибрацией.
Благодаря внедрению топливных насосов высокого давления (ТНВД) с электронным управлением, двухступенчатого впрыска топлива и оптимизации процесса сгорания удалось добиться устойчивой работы дизеля с неразделенной камерой сгорания на оборотах до 4500 об/мин, улучшить экономичность, снизить шум и вибрацию.
Наиболее распространенным является другой тип дизеля — с раздельной камерой сгорания. Впрыск топлива осуществляется не в цилиндр, а в дополнительную камеру. Обычно применяется вихревая камера, выполненная в головке блока цилиндров и соединенная с цилиндром специальным каналом так, чтобы при сжатии воздух, попадая в вихревую камеру, интенсивно закручивался, что улучшает процесс самовоспламенения и смесеобразования. Самовоспламенение начинается в вихревой камере, а затем продолжается в основной камере сгорания.
При раздельной камере сгорания снижается темп нарастания давления в цилиндре, что способствует снижению шумности и повышению максимальных оборотов. Такие двигатели составляют большинство среди устанавливаемых на современные автомобили.
Устройство топливной системы
Важнейшей системой является система топливоподачи. Ее функция — подача строго определенного количества топлива в заданный момент и с заданным давлением. Высокое давление топлива и требования к точности делают топливную систему сложной и дорогой.
Предназначен для подачи топлива к форсункам по строго определенной программе, в зависимости от режима работы двигателя и действий водителя. По своей сути современный ТНВД совмещает в себе функции сложной системы автоматического управления двигателем и главного исполнительного механизма, отрабатывающего команды шофера.
Нажимая педаль газа, водитель не увеличивает непосредственно подачу топлива, а лишь меняет программу работы регуляторов, которые сами изменяют подачу по строго определенным зависимостям от числа оборотов, давления наддува, положения рычага регулятора и т.п.
На современных авто применяются ТНВД распределительного типа. Насосы этого типа получили широкое распространение. Они компактны, отличаются высокой равномерностью подачи топлива по цилиндрам и отличной работой на высоких оборотах благодаря быстродействию регуляторов. В то же время они предъявляют высокие требования к чистоте и качеству дизтоплива: ведь все их детали смазываются топливом, а зазоры в прецизионных элементах малы.
Форсунки
Они вместе с ТНВД обеспечивает подачу строго дозированного количества топлива в камеру сгорания. Регулировка давления открытия форсунки определяет рабочее давление в топливной системе. Тип распылителя определяет форму факела топлива, которая важна для процесса самовоспламенения и сгорания. Применяются обычно форсунки двух типов: со шрифтовым или многодырчатым распределителем.
Форсунка на двигателе работает в тяжелых условиях: игла распылителя совершает возвратно-поступательные движения с частотой в половину меньшей, чем обороты двигателя, и при этом распылитель непосредственно контактирует с камерой сгорания. Поэтому распылитель форсунки изготавливается из жаропрочных материалов с особой точностью и является прецизионным элементом.
Топливный фильтр
Является важнейшим элементом дизельного мотора. Его параметры, такие как тонкость фильтрации, пропускная способность, должны строго соответствовать определенному типу двигателя. Одной из его функций является отделение и удаление воды , для чего обычно служит нижняя сливная пробка. На верхней части корпуса фильтра часто установлен насос ручной подкачки для удаления воздуха из топливной системы.
Иногда устанавливается система электроподогрева топливного фильтра, позволяющая несколько облегчить запуск двигателя, предотвращающая забивание фильтра парафинами, образующимися при кристаллизации дизтоплива в зимних условиях.
Как происходит запуск
Холодный пуск дизеля обеспечивает система предпускового подогрева. В камеры сгорания вставлены электрические нагревательные элементы — свечи накаливания. При включении зажигания свечи за несколько секунд разогреваются до 800-900 о С, обеспечивая тем самым подогрев воздуха в камере сгорания и облегчая самовоспламенение топлива. О работе системы водителю в кабине сигнализирует контрольная лампа.
Турбонаддув и Common-Rail
Эффективным средством повышения мощности является турбонаддув. Он позволяет подать в цилиндры дополнительное количество воздуха и в результате увеличивается мощность. Давление выхлопных газов дизеля в 1,5-2 раза выше, чем у бензинового мотора, что позволяет турбокомпрессору обеспечить эффективный наддув с самых низких оборотов, избежав свойственного бензиновым турбомоторам провала — «турбоямы».
Турбодизель имеет и некоторые недостатки, связанные с надежностью работы турбокомпрессора. Так, его ресурс существенно меньше ресурса самого двигателя и не превышает 150 тыс. км. Турбокомпрессор предъявляет жесткие требования к качеству моторного масла. Подробнее в статье: что такое турбокомпрессор.
Система Common-Rail. Компьютерное управление подачей топлива позволило впрыскивать его в камеру сгорания цилиндра двумя точно дозированными порциями. Сначала поступает крохотная, всего около миллиграмма, доза, которая при сгорании повышает температуру в камере, а следом идет главный «заряд». Для дизеля — двигателя с воспламенением топлива от сжатия — это очень важно, так как при этом давление в камере сгорания нарастает более плавно, без «рывка». Вследствие этого мотор работает мягче и менее шумно.
Почему в автомобиле с дизельным двигателем не использовали карбюратор
О карбюраторе и дизельных двигателях
Долгое время бензиновые двигатели производились с карбюраторной системой питания. Вплоть до конца 80-х, а в России и ряде других стран и до начала 2000-х с конвейеров бойко сходили автомобили, на двигателях которых устанавливали этот узел системы питания поршневых бензиновых ДВС. Подчеркнем — бензиновых. Но почему не дизельных?
По какой причине на более-менее современные дизельные моторы ставились системы впрыска?
На эти вопросы мы и попробуем дать ответ сегодня, а точнее воспользуемся рассуждениями одного сведущего человека по имени Габриэль Морено — инженера-механика, работающего на очень известного производителя дизельных двигателей в США, поэтому есть шанс, что на слова данного человека можно сослаться.
Итак, вот его объяснение, почему дизели никогда не использовали карбюраторы, но оборудовались ТНВД и системой прямого впрыска:
«Как известно, бензиновые моторы — это поршневые двигатели внутреннего сгорания, которые идут с искровым зажиганием. Основой зажигания в них выступает искра, которая проскакивает между электродами свечи в определенный момент для воспламенения топливно-воздушной смеси внутри цилиндра.
С другой же стороны, дизельные моторы — это двигатели внутреннего сгорания, в которых воспламенение происходит от сжатия, что означает, что воздушно-топливная смесь внутри цилиндра воспламеняется не от искры, а от тепла, создаваемого при сжатии воздушно-топливной смеси внутри цилиндра. Именно поэтому, как известно, дизельные двигатели имеют гораздо более высокую степень сжатия по сравнению с бензиновыми коллегами, а также и более высокий термический КПД.
Итак, теперь, когда изложено фундаментальное различие между бензином и дизелем, давайте перейдем к вопросу, говорит Габриэль, касающемуся того, почему карбюраторы нельзя использовать на дизельных моторах?
Что ж, поскольку топливно-воздушная смесь воспламеняется теплом от сжатия, у нас должен быть способ рассчитать время начала воспламенения. В бензиновом двигателе инженеры делают это, используя опережение зажигания, но без свечи зажигания в дизельном двигателе это и не нужно, поскольку в данном случае мы делаем это, рассчитывая момент впрыска топлива.
Иными словами, если бы мы попытались запустить дизель с карбюратором, он бы работал очень плохо, потому что на каждом такте впуска мы подавали бы воздух и топливо. Воспламенение в цилиндре в таком случае происходило бы, как только смесь становилась бы достаточно разогретой от сжатия, но такое состояние будет чрезвычайно сложно поймать.
Гораздо лучше, когда дизель будет использовать топливную систему высокого давления, которая впрыскивает топливо в очень точный момент, и оно (давление) должно быть высоким, чтобы давление струи топлива могло преодолевать давление в цилиндре и распылиться из форсунки, несмотря на момент впрыска в точке цикла, когда давление в цилиндре наиболее высокое, то есть в момент, когда поршень приближается к верхней мертвой точке.
Используя форсунку высокого давления, мы можем контролировать синхронизацию подачи топлива (и, следовательно, обороты двигателя), а контроль количества топлива, проходящего через форсунку, определяет, какое давление создается в цилиндре, что, следовательно, влияет на крутящий момент.
Без возможности управления синхронизацией подачи дизеля мы не могли бы заставить двигатель набирать обороты или производить мощность. Карбюратор на дизельном двигателе только позволял бы топливу течь постоянно, без контроля времени подачи топлива».
Вот в чем смысл! Если нет свечей зажигания, управляемых распределительным устройством двигателя, мы не сможем контролировать момент того, когда тот или иной поршень должен достигнуть своего рабочего хода. Вам нужно будет рассчитать время, контролируя при этом, когда будет впрыскиваться в цилиндр дизельное топливо. И все это механически.
Технически это крайне сложная и нестабильная схема работы, в частности из-за того, что с каждым цилиндром в таком случае нужно работать топливной системе индивидуально, поэтому установка с дроссельной заслонки не будет работать так же, как она работает на бензиновых моторах.
И еще это также означает, что нажатие на педаль газа на дизельном двигателе, оборудованном карбюратором, приведет к попаданию более богатой топливно-воздушной смеси в цилиндры, и если эта смесь будет слишком богатая, без достаточного количества воздуха, это приведет к плохому сгоранию, из-за чего автомобиль просто не будет тянуть, а мотор станет работать нестабильно и в режиме постоянного чрезмерного износа.