0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что создает давление в дизельном двигателе

Насос топливный низкого давления: первая ступень системы питания дизеля

Для работы топливного насоса высокого давления дизельных двигателей необходимо обеспечить подачу топлива в него под напором. Данную задачу решает топливный насос низкого давления — все об этом механизме, его типах, конструкции и принципе работы, а также о выборе и замене насосов рассказано в статье.

Что такое топливный насос низкого давления (ТННД)?

Топливный насос низкого давления (топливоподкачивающий насос, ТННД) — компонент ступени низкого давления топливной системы и системы впрыска дизельного двигателя; насос для подачи топлива из топливного бака во впускную полость топливного насоса высокого давления (ТНВД).

Данный агрегат выполняет несколько функций:

  • Создание на входе в ТНВД необходимого для его функционирования избыточного давления;
  • Обеспечение поступления в ТНВД достаточного объема топлива;
  • Создание во всасывающей разрежения, необходимого для забора топлива из бака и преодоления сопротивления фильтра грубой очистки (ФГО);
  • Создание давления, достаточного для преодоления топливом сопротивления фильтра тонкой очистки (ФТО);
  • Предотвращение выделения пузырьков легколетучих фракций из топлива при движении в топливной магистрали (что может происходить вследствие нагрева топлива во время работы двигателя и в теплое время года).

Применение ТННД на дизелях обусловлено особенностями работы ТНВД. В отличие от других типов насосов, на входе ТНВД не создается разрежение, за счет которого обеспечивался бы забор топлива из бака. Напротив, для нормальной работы насосных секций ТНВД на его входе необходимо создать некоторое избыточное давление (порядка 4-6 атмосфер) — именно эту задачу и решает ТННД.

ТННД обычно выполняется в виде отдельного компактного узла, который монтируется непосредственно на ТНВД и имеет привод от его кулачкового вала, либо устанавливается отдельно и имеет собственный привод. Вход ТННД соединен с магистралью топливной системы со стороны бака и ФГО, выход — с магистралью со стороны ФТО и входа ТНВД. В результате такого расположения топливоподкачивающий насос создает разрежение для забора топлива из бака и повышает его давление для преодоления сопротивления ФТО и подачи на ТНВД.

ТННД является одним из основных компонентов системы питания дизельного мотора, его поломка фактически выводит из строя и всю силовую установку. Так что ТННД необходимо как можно скорее ремонтировать или менять, а, чтобы сделать это правильно, следует разобраться в существующих типах этих агрегатов и их конструкции.

Классификация ТННД


Конструкция роликового топливоподкачивающего насоса


Конструкция роторно-лопастного топливоподкачиваюшего насоса


Конструкция шестеренчатого топливоподкачивающего насоса

В системах питания дизелей находят применение насосы трех основных видов:

  • Шестеренчатые;
  • Роторные;
  • Поршневые.

При этом агрегаты могут иметь различный привод:

  • Механический — от вала ТНВД, коленвала, распредвала;
  • Электрический — от встроенного электромотора.

Как правило, электрический привод имеют некоторые виды роторных (роликовых) насосов, они выполнены в виде автономного узла, монтируемого рядом с двигателем, у топливного бака или в ином месте. Роторные и шестеренчатые насосы применяются на легковых авто и коммерческих грузовиках, оснащенных системой впрыска Common Rail (они могут быть как автономными, так и интегрированными в корпус ТНВД). Дизельные двигатели грузовых автомобилей с распределительной системой впрыска обычно имеют поршневой насос, интегрированный с ТНВД.

Каждый из указанных агрегатов имеет различный принцип работы и свои конструктивные особенности.

Конструкция и принцип работы роторных ТННД

Роторные насосы низкого давления бывают различных типов — роторно-лопастные, роликовые и другие. Однако они отличаются лишь способом формирования замкнутых камер для топлива.

Насосная секция роторного ТННД состоит из цилиндрического корпуса (плиты нагнетания), в стенках которой выполнены прорези переменного сечения, и вращающегося внутри корпуса ротора с прорезями, в которые на пружинах вставлены ролики или плоские лопасти. При вращении насоса ролики/лопасти, упираясь в стенки корпуса, образуют замкнутые полости, захватывают топливо со стороны всасывания и проталкивают его по прорези — за счет сокращения объема камеры давление топлива возрастает, и когда ролик/лопасть проходит выпускное отверстие, топливо выбрасывается через него в систему.

Недостаток роторных насосов — необходимость в сложном приводе от коленчатого вала, шестерен распредвала или вала ТНВД. Это повышает стоимость агрегата и снижает его надежность. Однако ТННД данного типа с электрическим приводом автономны и их характеристики не зависят от режима работы силового агрегата — это обеспечивает стабильное поступление топлива в ТНВД и повышает устойчивость работы мотора.

Устройство и принцип работы шестеренчатого ТННД

Конструктивно этот насос очень прост, он повторяет устройство обычных шестеренчатых масляных насосов. Основу ТННД составляет корпус, внутри которого расположены две зацепленные друг с другом шестерни. Каждая шестерня вращается в своей половине корпуса так, что ее зубцы прижаты к стенкам и образуют ряд герметичных камер. При вращении шестерен эти камеры захватывают топливо и перемещают его в сторону выпуска, за счет постоянного поступления топлива в сторону нагнетания его давление повышается до необходимой величины.

Для шестеренчатых насосов присущи те же преимущества и недостатки, что и для роторных. Однако эти ТНВД более просты по конструкции, а поэтому они дешевле в производстве и обслуживании, что и обусловило их широкое распространение.

Конструкция и принцип работы поршневого ТННД

Поршневые топливные насосы низкого давления бывают двух типов:

  • Однократного действия — за один рабочий цикл выполняется одно накачивание топлива;
  • Двукратного действия — за один рабочий цикл выполняется два накачивания топлива.

Наиболее просто устроен насос однократного действия. Его основу составляет литой корпус, в котором находятся впускная и нагнетательная полости, а также центральная полость под поршень. Поршень соединен со штоком, который через цилиндрический толкатель или ролик опирается на эксцентрик кулачкового вала ТНВД, а обратной стороной упирается в пружину. Непосредственно в поршне или на всасывающей секции насоса выполнен впускной клапан, а выпускной расположен в нагнетательной секции.

Работа поршневого насоса однократного действия сводится к следующему. Пружиной шток прижимается к вращающемуся эксцентрику, поэтому при вращении вала шток набегает и сбегает с эксцентрика, а поршень совершает возвратно-поступательные движения. При движении поршня в сторону нагнетательной секции его клапан открывается и полость над ним заполняется. При движении поршня вверх клапан закрывается и полость герметизируется — за счет этого давления топлива повышается. При достижении необходимого давления срабатывает выпускной клапан и топливо поступает к фильтру тонкой очистки и ТНВД. Далее процесс повторяется.

Насосы однократного действия нагнетают топливо только при движении поршня в одну сторону, поэтому они создают пульсирующий поток. Этот недостаток устранен в насосах двукратного действия.

Конструктивно ТННД двукратного действия похож на предыдущий, однако в нем выполнены две пары впускных и выпускных клапанов, а поршень является герметичным и делит полость на две камеры. Работает агрегат просто. При движении поршня объемы полостей над и под ним изменяются: одна увеличивается, а другая уменьшается. В полости с уменьшающимся объемом давление растет и в определенный момент топливо, преодолев усилие пружины выпускного клапана, поступает в магистраль к ТНВД. В полости с увеличивающимся объемом, напротив, давление падает, за счет чего в нее поступает топливо из бака. При движении поршня в обратную сторону полости меняются ролями и в них происходят описанные выше процессы.

Насосы двукратного действия нагнетают топливо при движении поршня в обе стороны, поэтому они создают более равномерный поток топлива.

В насосах также предусмотрены механизмы изменения подачи топлива вслед за изменением скорости вращения коленвала. Это достигается регулировкой усилия пружины и введением в насос перепускного канала (иногда с дополнительным клапаном). Настройка этих компонентов выполняется так, чтобы при снижении оборотов мотора амплитуда движения поршня уменьшалась (например, за счет подачи топлива под поршень в насосах однократного действия или за счет упругости пружины) — это уменьшает подачу топлива, при росте оборотов подача восстанавливается.

Также в этих механизмах встраивается насос ручной подкачки, посредством которого осуществляется заполнение системы после длительного простоя или ремонта. Такой насос имеет простейший ручной привод с помощью рукоятки, которая в транспортном положении зафиксирована на корпусе агрегата резьбой.

Читать еще:  Хорошо промыть от нагара двигатель

Вопросы выбора и замены ТННД

Топливоподкачивающий насос постоянно работает с высокими нагрузками, вследствие чего его детали — поршень, клапаны и их седла, уплотнительные компоненты — подвергаются интенсивному износу и становятся причинами поломок. В большинстве случаев для устранения неисправностей и восстановления работы ТННД требуется заменить отдельные детали, которые продаются в ремкомплектах.

В случае серьезных поломок — при возникновении трещин в корпусе, изломов и разрушения деталей, их деформации и т.д. — насос меняется в сборе. На замену следует выбирать ту модель топливоподкачивающего насоса, которая рекомендована производителем транспортного средства и по характеристикам совместима с ТНВД. Все работы по замене и настройке насоса необходимо выполнять в соответствии с инструкцией по ремонту и ТО данного конкретного транспортного средства. При правильном выборе агрегата вся система питания дизеля будет работать надежно и эффективно на всех режимах.

Все про компрессию и степень сжатия дизельного двигателя

Двигатель любого транспортного средства, в том числе и дизельный, представляет собой довольно сложное устройство, состоящее из механизмов и систем.

Взаимодействие этих систем и механизмов между собой позволяет преобразовывать энергию, генерируемую при сгорании топливовоздушной смеси, во вращательное движение кривошипно-шатунного механизма с дальнейшей передачей вращения на коробку передач.

Основная работа по преобразованию энергии происходит внутри цилиндро-поршневой группы, то есть в цилиндрах.

Преобразование энергии зависит от многих факторов, включая компрессию двигателя. Эти критерии особенно важны в случае дизельных двигателей, поскольку воспламенение горючей смеси в цилиндрах этих двигателей происходит в результате ее нагрева за счет сжатия.

Понятие степени сжатия

Эти термины часто путают или объединяют в один термин. На самом деле это два разных термина, и они по-разному характеризуются.

Для начала разберем все, что касается степени сжатия дизельных двигателей.

Отношение объема цилиндра двигателя, когда поршень достигает нижней мертвой точки (ВМТ), к объему камеры сгорания, когда поршень достигает верхней мертвой точки, является степенью сжатия двигателя.

Этот коэффициент указывает на перепад давления, который возникает в цилиндре двигателя, когда топливо поступает в цилиндр.

В технической документации, прилагаемой к дизельному двигателю, степень сжатия указывается в виде математического отношения, например 18: 1.

Для дизельного двигателя оптимальная степень сжатия составляет от 18: 1 до 22: 1. Именно при этих передаточных числах двигатель достигает максимальной эффективности.

Как все работает

В случае дизельного двигателя во время такта сжатия, когда поршень достигает ВМТ, объем в цилиндре резко уменьшается. На данный момент в камере сгорания находится только воздух, и именно он сжимается; этот процесс называется тактом сжатия.

Когда поршень достигает ВМТ, воздух сжимается до степени сжатия, указанной в документации, и топливо под давлением подается в камеру сгорания.

Топливно-воздушная смесь воспламеняется под действием высокого давления, что значительно увеличивает давление в камере, и поршень затем переходит в состояние ВМТ.

Высокое давление горючей смеси увеличивает давление на головку поршня, заставляя его двигаться в сторону ВМТ.

Скользящее движение поршня преобразуется шатуном во вращательное движение коленчатого вала.

В этом случае давление, создаваемое воспламенением смеси, заставляет поршень двигаться в сторону NTM, это называется ходом. Ход — это один из рабочих ходов цилиндро-поршневой группы.

Степень сжатия — вот что важно во время такта сжатия. Чем он выше, тем легче воспламенить горючую смесь и тем полнее она горит, обеспечивая большее давление.

Благодаря хорошей степени сжатия дизельный двигатель обеспечивает большую мощность при меньшем расходе топлива.

Однако системы с дизельным приводом имеют диапазон степени сжатия, который не следует превышать по какой-либо причине.

Степень сжатия менее 18: 1 снижает мощность системы и увеличивает расход топлива.

Слишком высокая степень сжатия также отрицательно сказывается на двигателе, особенно на дизельных двигателях. Повышенные напряжения в цилиндрах и поршневых группах быстро сокращают срок их службы.

Повышенное сжатие может привести к изгибу поршней и изгибу шатунов.

В некоторых случаях увеличение степени сжатия может привести к взрыву электростанции без восстановления.

ВАЖНО: степень сжатия в водородных двигателях намного выше.

Возможность замера степени сжатия

Проверить степень сжатия дизельного двигателя в автомастерской практически невозможно. Так как некоторые замеры необходимо произвести, что сделать очень сложно.

Одним из таких измерений является определение объема цилиндра, когда поршень находится в точке ВМТ.

такженеобходимо знать некоторые параметры силовой установки, часть из которых можно найти в технической документации, а часть установить довольно сложно.

Для расчета степени сжатия необходимо знать объем камеры сгорания, так как прокладка находится между блоком цилиндров, необходимо знать ее толщину и диаметр отверстия поршня в нем, ход поршня и диаметр цилиндра. .

Имея все эти данные, а также коэффициент сжатия, можно математически рассчитать, измерив объем в цилиндре.

Способы повышения показателя

Степень сжатия в дизельном двигателе измерить сложно, но можно изменить в лучшую сторону.

Есть несколько способов увеличить степень сжатия дизельного двигателя.

Уменьшение камеры сгорания двигателя.

Самый простой способ увеличить этот показатель — уменьшить камеру сгорания.

Поскольку степень сжатия — это отношение объема цилиндра к объему камеры сгорания, изменение объема одного из них может изменить саму степень.

Объем камеры сгорания можно уменьшить несколькими способами.

Первое, что вы можете сделать, это заменить прокладку между блоком и головкой блока цилиндров на более тонкую, что изменит объем камеры сгорания.

Дополнительно головка блока цилиндров может быть вложенной. В этом случае с головки блока цилиндров снимается слой металла, так что камера сгорания уменьшается.

Второй способ изменить это значение — увеличить давление в камере сгорания.

Использование турбонагнетателя, также известного как турбонаддув, позволяет увеличить степень сжатия.

В дизельных двигателях, которые не имеют турбонагнетателя, воздух, необходимый для сжигания смеси, подается за счет отрицательного давления в цилиндре, которое создается во время такта впуска.

При таком типе подачи воздуха невозможно достичь высокого давления в такте сжатия, поскольку количество воздуха ограничено.

В случае турбокомпрессора воздух нагнетается в цилиндры. Это создает больше воздуха и, следовательно, большее давление в цилиндре по мере продвижения такта сжатия.

Часто в дизелях помимо наддува используется еще одно устройство — интеркулер. Он также позволяет увеличить давление в цилиндре, но на несколько иной основе, чем наддув.

Задача интеркулера — охлаждать воздух перед его поступлением в цилиндры. В результате плотность воздуха увеличивается по мере его охлаждения, и, следовательно, давление в цилиндре выше.

Это основная информация о степени сжатия. Теперь перейдем к сжатию.

Понятие компрессии

Компрессия — это мера давления в цилиндрах двигателя. Этот показатель может быть измерен в нескольких значениях — кг / см2, барах, атмосферах, паскалях.

Особого внимания заслуживает компрессия дизельного двигателя, так как этот размер очень важен для дизельных двигателей. В дизельных двигателях компрессия должна быть около 22 Атм, хотя в различных двигателях она может быть выше и значительно.

В цилиндрах дизельных двигателей необходимо обеспечить высокую степень сжатия, поскольку горючая смесь воспламеняется именно благодаря высокому давлению.

Если заданный показатель на дизельном двигателе существенно ниже нормы, запустить двигатель затруднительно или невозможно.

Сжатие в цилиндре дизельного двигателя достигается за счет сжатия воздуха через поршень во время такта сжатия. Однако добиться полной герметичности внутри цилиндра просто невозможно, утечки воздуха будут всегда.

Воздух может частично проникать в изношенные компрессионные кольца, когда они больше не могут должным образом прилегать к цилиндру, некоторая масса воздуха может выходить из цилиндра из-за неплотной посадки клапанов на седлах.

В общем, величина компрессии указывает на состояние двигателя.

Система питания дизельного двигателя

Дизельный двигатель все больше набирает популярность среди автолюбителей, особым спросом эти установки пользуются на европейском рынке. С момента своего первого появления, агрегат, работающий на солярке, претерпел множество изменений и улучшений в своей конструкции.

Читать еще:  Чем очистить разобранный двигатель

Сегодня это уже не тот двигатель, который был десять лет назад, современный мотор на солярке ничем не уступает бензиновому по шумности, комфорту, экологическим показателям. А по некоторым, таким как экономичность, крутящий момент, мощность, динамические характеристики даже превосходит.

Делая свой выбор в пользу силовой установки на дизельном топливе, пользователь получает современное устройство, эксплуатация которого, с точки зрения простого обывателя, не будет достаточно сложной. Тем не менее, разница в обслуживании между бензиновым мотором и дизелем есть. Основное отличие между двумя установками, процесс воспламенения рабочей смеси.

Для его нормального осуществления не менее важно эту смесь правильно приготовить. Устройство и работа системы питания в дизельных двигателях намного сложней бензинового, чтобы правильно эксплуатировать агрегат необходимо понимать, как работает каждый её механизм.

Особенности и требование к дизельному топливу

Процесс воспламенения в дизельном агрегате происходит самостоятельно, свеча зажигания из него полностью исключена. Для подогрева воздуха, поступающего в цилиндр, может быть установлена свеча накаливания, сделано это с целью помочь мотору быстрей прогреться, при холодном запуске. При прогреве установки, свечи отключают.

Устройство топливной системы дизельного двигателя, в частности, требования, предъявляемые к ней, в основном зависят от специфических особенностей топлива. Дизель представляет собой смесь фракций, в основном керосина и газойля, полученных после извлечения из нефти бензина.

Солярка, в сравнении с бензином, обладает такими свойствами и требованиями:

  • Большой вязкостью, в результате чего процесс воспламенения проходит медленней;
  • Высокой температурой кипения, следовательно, испаряемость её ниже;
  • Способность самостоятельно воспламеняться, пожалуй, самое главное свойство. Показатель оценивается цетановым числом, в современных видах топлива оно имеет значение 45-50, чем оно выше, тем лучше топливо.
  • Чистота, это одно из главных условий нормальной подачи топлива в силовую установку. Она осуществляется посредством топливного насоса, создающего высокого давления (ТНВД), он сжимает солярку, повышая давление, после чего форсунка подаёт и распыляет её в виде тумана непосредственно в камере сгорания. Смешиваясь с горячим воздухом и одновременно сжимаясь до давления от 3 до 5 МПа, топливо само воспламеняется. При несоблюдении чистоты, подача топлива будет сильно усложнена, как результат, вся работа системы нарушена и остановлена. Поэтому в дизельных моторах очень важно использовать качественные фильтры очистки горючего от механических примесей, парафина, воды.
  • Высокая плотность;
  • Хорошая смазывающая способность, благодаря которой срок службы дизельных силовых установок намного превосходит бензиновые аналоги;
  • Температура застывания. Этот показатель позволяет разбить топливную смесь на сорта: летние, зимние, арктические.

Основные положения

Дизельная силовая установка является двигателем внутреннего сгорания, поршневого типа, процесс смесеобразования в котором происходит внутри цилиндра, а воспламенение смеси осуществляется за счет сжатия. Этим агрегат отличается от бензинового, для воспламенения смеси которого, необходимо применение внешнего источника, искровую свечу, либо тепловой элемент.

Ещё один процесс, протекающий в двигателе, с отличаем от его собрата, является процесс смесеобразования. В бензиновом агрегате смесеобразование протекает за пределами цилиндра, в специальном устройстве, смешивающем бензин и воздух, затем перемещается в трубопровод и завершается в цилиндре, во время процессов впуска и сжатия.

Максимальная схожесть с дизельным мотором по смесеобразованию присуща агрегатам с инжектором, в которых подача топлива происходит путем непосредственного впрыска в цилиндр. Однако процесс и результат смешивания в этих установках все равно существенно разнится.

Принцип работы дизельного мотора

Общий принцип работы дизельного агрегата, выполняющего четыре такта в процессе эксплуатации можно описать так:

  • Процесс наполнения цилиндра чистым воздухом при движении поршня в положение нижней мертвой точки, воздух проходит через впускной клапан;
  • Сжатие воздуха до его максимального нагрева, поршень движется в положение верхней мертвой точки, впускной и выпускной клапана закрыты;
  • Впрыск горючего в цилиндр, его смесь с воздухом и самовоспламенение, при этом вырабатывается большое количество теплоты, увеличивается давление;
  • Процесс совершения полезной работы за счет движения поршня вниз, стимулирует этот процесс действие давления газов;
  • Движение поршня в положение верхней мертвой точки, выброс отработанных газов через выпускной клапан.

Нормальная работа топливной системы, условия

Что бы топливная система дизельного двигателя, включающая в себя аппаратуру и механизмы, работала стабильно, необходимо выполнение определённых требований:

  • В камере сгорания должна быть обеспечена высокая температура и давление;
  • Топливо и воздух, смешиваясь, должны создавать определённую пропорцию;
  • Вращение коленчатого вала с определённой частотой должно соответствовать углу опережения впрыска топлива;
  • Параметры воздушного заряда должны соответствовать наиболее оптимальному состоянию. Это требование очень важно, поскольку при попадании топлива в неподготовленную среду работа установки будет сильно осложнена. Параметры, оказывающие сильное влияние на процесс следующие: компрессия, температура головки поршня, количество и пропорция воздуха в камере сгорания.

Что касается степени сжатия, её параметры существенно отличаются от параметров бензинового мотора. В бензиновых силовых установках она имеет значение на уровне 10, тогда как в дизельных агрегатах может быть 20 и выше. Это обусловлено тем, большая степень сжатия позволяет создать большую температуру камеры сгорания, что значительно облегчает воспламенение топливовоздушной смеси и запуск силовой установки.

Назначение топливной системы

Основное назначение системы питания дизельного двигателя, это транспортировка топлива к механизмам дозирования и распыления. Весь процесс происходит в условиях повышенного давления.

Особенностью работы системы является тот факт, что количество топлива должно подаваться строго в определённой норме, необходимой для успешной работы мотора. При увеличении либо уменьшении её возможны сбои и поломки.

Для этих целей на ТНВД устанавливается специальный прибор, всережимный регулятор.

Количество топлива и продолжительность его впрыска определяется положением цилиндра прибора, а начало и завершение процесса, зависит от прохождения определённых отверстий плунжером, которые имеются в цилиндре. Сам же уровень впрыска определяется давлением, при котором начинает открываться форсунка.

Система питания, устройство

Система питания дизельного двигателя характерна сложным строением, она включает в себя целый комплекс различных устройств. Для обеспечения правильного функционирования, топливо надо не просто подать к форсункам, а сделать это, выдержав определённое высокое давление. Это условие необходимо, поскольку только так производится точная регулировка топливной порции впрыска в цилиндр.

Система питания топливом выполняет следующие функции:

  • Порционное дозирование топлива в зависимости от нагрузки и режима работы силовой установки;
  • Подачу горючего в рабочую камеру с учётом заданного временного промежутка и определённой интенсивностью;
  • Максимально эффективное распределение топливного тумана таким образом, что бы он равномерно обволакивал весь объём рабочей камеры;
  • Максимальная очистка горючего перед подачей к механизмам и форсункам.

Схема системы питания

Схема системы питания дизельного двигателя включает в себя основные компоненты, в число которых входят:

  • Бак для топлива;
  • Фильтры очистки топлива (грубой и тонкой);
  • Насос топливный, подкачивающий;
  • Насос топливный, создающий высокое давление (ТНВД);
  • Форсунки;
  • Трубопровод для перекачки топлива под низким давлением;
  • Трубопровод высокого давления;
  • Фильтр воздушный

Схема топливной системы имеет вспомогательные компоненты, к которым можно отнести электрические насосы, детали выпуска отработанных газов, фильтры очистки от сажи, глушители и т.п. Общее устройство системы питания предполагает деление топливной аппаратуры на две группы:

  • Аппаратура, подводящая топливо;
  • Аппаратура, подводящая воздух.

Топливная аппаратура дизельных двигателей может иметь различное устройство, система разделённого типа, на сегодняшний день является наиболее распространенной. Для этой системы характерно разделение ТНВД и форсунок на отдельно функционирующие устройства. Топливо проходит путь по путепроводам высокого и низкого давления. Проверка шлангов подачи топлива является обязательным условием эксплуатации силовой установки.

Хранение, фильтрация и подача к ТНВД происходит при невысоком давлении. После чего, топливный насос поднимает давление в системе для правильного дозирования и подачи порции топлива в камеру сгорания в нужный момент.

Систему питания дизельного мотора обслуживает два насоса:

  • Насос, создающий высокое давление;
  • Насос, подкачки топлива.
Читать еще:  Что нужно чтобы двигатель не заглох

Насос подкачки топлива осуществляет подачу солярки из бака к фильтрам грубой и тонкой очистки и дальше к насосу, создающему высокое давление. Этот путь жидкость проходит с относительно невысоким показателем давления.

Проходя ТНВД, давление топлива нагнетается до высокого уровня. Порядок работы цилиндров определяет подачу рабочей смеси. Насос, создающий высокое давление имеет несколько секций, каждая из которых отвечает за определённый цилиндр двигателя.

Устройство системы питания дизельного двигателя, осуществляющего два такта, может иметь неразделённый тип. Для таких систем применяется специальное устройство, насос-форсунка. Это своего рода объединение топливного насоса, создающего высокое давление и форсунки в один прибор.

Такие моторы имеют небольшое распространение, поскольку срок службы изделия намного меньше, работа происходит жестко, с большим шумом. Конструкция не предусматривает наличие магистрали высокого давления.

Конструктивный принцип работы системы питания дизельного двигателя, получившего наибольшее распространение, предусматривает расположение форсунок в головке блока цилиндров. Основная задача такого расположения, точное распыление топлива в камере сгорания. К ТНВД, поступает большой объём солярки, её излишки отводятся обратно в бензобак по дренажным трубам.

Форсунки могут быть двух типов:

  • Закрытого типа;
  • Открытого типа.

Более широкое применение имеют форсунки закрытого типа. В устройстве таких форсунок есть специальная запорная игла, которая закрывает отверстие подачи топлива. Поэтому, полость форсунки соединяется с камерой сгорания только при открытии отверстия и впрыске жидкости.

Common Rail

После значительного ужесточения экологических норм для дизельных силовых установок, система питания моторов, работающих на солярке, подверглась изменениям.

Схема подачи топлива, когда смесь воздуха и горючего поступает в рабочую камеру при атмосферном давлении, стала называться Common Rail. Как результат, за счет такого принципа можно снизить расход и увеличить мощность установки. Кроме того, схема получила широкое применение, благодаря снижению шума и увеличению крутящего момента мотора. На сегодня, каждый второй автомобиль оснащен данной системой.

Однако, как и у каждого механизма, есть и недостатки. Например, для этой системы требуется качественное топливо, небольшое загрязнение способно привести к полной остановке агрегата, поскольку работа форсунок будет заблокирована.

Система питания дизельного двигателя

Автор статьи: AutoKontact.ru

дата: 14.03.2018

Принцип работы дизельного двигателя совсем иной, чем у мотора, работающего на бензине. Этим и объясняется принцип его питания. В двух словах – работа дизельного мотора строится на воспламенении топливной смеси от сильного сжатия, поскольку высокая температура вызывает ее возгорание.

Ремонт дизельных двигателей – дело не такое сложное, если знать, как он устроен, и на чем построена работа дизельного двигателя.

Порядок работы системы дизельного двигателя

Сначала цилиндры дизельного двигателя наполняются воздухом. Поршни в них движутся вверх, создавая очень высокое давление, от сжатия воздух раскалится до того, что дизельное топливо, будучи смешанным с ним, воспламенится.

Температура достигает максимального значения, когда поршень заканчивает движение вверх, затем дизтопливо впрыскивается посредством форсунки, она подает его не струйкой, а распыляет. Далее, из-за высокой степени нагрева сдавленного воздуха, воздушно-горючая смесь взрывается. Давление из-за взрыва достигает критической отметки и заставляет поршень опускаться вниз. На языке физики – совершается работа.

Система дизельного двигателя устроена так, что подает горючее в мотор, обеспечивая одновременно и несколько других функций.

Части системы дизельного двигателя, механизм его действия

Дизель состоит из:

  • бака для горючего,
  • насоса, подкачивающего дизтопливо,
  • фильтров,
  • топливного насоса, который подает горючее под высоким давлением,
  • свечи накаливания
  • основной части двигателя, которой является форсунка.

Подкачивающий насос отвечает за забор дизельного топлива из бака и отправляет его в топливный насос, а сам этот насос для подачи горючего под давлением – состоит из нескольких секций (их столько же, сколько двигатель ДВС имеет цилиндров – одна секция отвечает за обслуживание одного цилиндра).

Устройство насоса для подачи горючего под воздействием давления таково: внутри него по низу во всю длину располагается вал с кулачками, который совершает вращения от распредвала мотора. Кулачки воздействуют на толкатели, заставляющие функционировать плунжер (поршень). Поднимаясь, плунжер способствует давлению горючего в цилиндре. Таким образом и происходит выталкивание горючего посредством ТНВД в ту главную рабочую часть двигателя, которой и является форсунка.

Поступающему в магистраль дизельному топливу необходимо давление, чтобы продвинуться к форсунке для распыления через нее. Для этого и нужен поршень – он захватывает горючее внизу и продвигает к секционной верхушке. Поступающее под напором – горючее уже может качественно распыляться в камере сгорания. В этом насосе сила давления достигает 2000 атмосфер.

Одна из функций плунжера – контролировать объем подачи дизтоплива на форсунку своей двигающейся частью, открывающей и закрывающей канальца внутри него, эта часть соединяется с педалью, отвечающей за подачу газа в салоне машины. То, насколько открыты каналы подачи горючего и его объем – обусловлено углом, под которым повернут поршень. Его поворот осуществляет рейка, соединяющаяся с педалью газа.

Вверху насоса, подающего под давлением горючее, расположен клапан, он устроен так, чтобы открываться под давлением и захлопываться, если оно мало. Таким образом, когда поршень внизу, клапан – в захлопнутом положении, и горючее из шланга, к которому подсоединена форсунка, поступать в насос не может. Давление, образующееся в секции, достаточно для впрыскивания горючего в цилиндр, тогда топливо и доставляется по шлангу в форсунку, а она – производит распыление его в цилиндре.

Форсунка — назначение и виды

Очень часто ремонт дизельных двигателей связан с диагностикой работы форсунок и их починкой или заменой.

Они бывают двух видов:

  • управляемые механически
  • электромагнитные

В управляемых механически – отверстие, которое распыляет горючее, открывается в зависимости от силы давления в шланге. Ее отверстие закрывает игла, соединенная с поршеньком на верхушке форсунки. Пока не возникло давления, игла не позволяет горючему выйти через распылитель. Когда горючее поступает под напором, плунжер поднимается и оттягивает иголку. Отверстия распылителя раскрываются, и горючее выбрызгивается в цилиндр.

В нем установлены свечи накаливания, воспламеняющие горючее с воздухом. Они раскаляют воздух в специализированном отсеке, прежде, чем он окажется в цилиндре. По сути, свечи только облегчают запуск мотора ДВС, поскольку перед попаданием в цилиндр воздух уже достаточной температуры. Именно поэтому, когда на улице тепло, или если мотор еще не остыл после выключения зажигания, его запуск происходит и без участия свечей, а когда холодно – это невозможно.

Оснащенный электромагнитными форсунками дизель – более современный вариант. В таком случае – в насосе, подающем горючее, отсутствуют для каждого цилиндра своя секция, а шланг – один на все форсунки, и обеспечивает нужное давление и впрыск горючего сразу во все форсунки цилиндров ДВС.

При данной системе ДВС – на форсунки воздействуют электрические импульсы, поступающие от блока управления автомобилем: их клапаны, открывающие и закрывающие выходы для впрыска горючего – электромагнитные. Сам блок управления мотором считывает информацию со специальных датчиков, а затем дает команду электромагнитному управлению форсунками.

Такая система подачи топлива в дизельный двигатель еще и намного экономичней.

Форсунки начали использовать в производстве моторов еще в тридцатых годах XX столетия, их устанавливали сначала на авиамоторы, затем стали применять в двигателях гоночных машин. А массовое применение в автомобилестроении они получили лишь в семидесятые-восьмидесятые годы прошлого века. Тому послужили топливный кризис и осознание необходимости сбережения природы: чтобы сделать авто более мощными – специально переобогащали воздушно-горючую смесь, но это приводило к увеличению расхода топлива и переизбытку продуктов сгорания в газовых выхлопах автомобилей. И в 1967-м проблема была решена – тогда и была изобретена электромагнитная форсунка, в которой впрыск осуществляется электронной командой. Вне всяких сомнений, электроника всегда лучше механики, поскольку имеет перед ней массу очевидных преимуществ.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector