6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое генератор тока в двигателе

Как самому переделать генератор из асинхронного двигателя?

Данная задача требует выполнения ряда манипуляций, которые должны сопровождаться четким пониманием принципов и режимов функционирования такого оборудования.

Что собой представляет и как работает

Эл двигатель асинхронного типа – это машина, в которой происходит трансформация электрической энергии в механическую и тепловую. Такой переход становится возможным благодаря явлению электромагнитной индукции, которая возникает между обмотками статора и ротора. Особенностью асинхронных двигателей является тот факт, что частота вращения этих двух ключевых его элементов отличается.

Конструктивные особенности типичного эл двигателя можно видеть на иллюстрации. И статор, и ротор представляют собой соосные круглого сечения объекты, изготавливаются путем набора достаточного количества пластин из специальной стали. Пластины статора имеют пазы на внутренней части кольца и при совмещении образуют продольные канавки, в которые наматывается обмотка из медной проволоки. Для ротора, ее роль играют алюминиевые прутки, они также вставляются в пазы сердечника, но с обеих сторон замыкаются стопорными пластинами.

Во время подачи напряжения на обмотки статора, на них возникает и начинает вращаться электромагнитное поле. В связи с тем, что частота вращения ротора заведомо меньше, между обмотками наводится ЭДС и центральный вал начинает двигаться. Не синхронность частот связана не только с теоретическими основами процесса, но и с фактическим трением опорных подшипников вала, оно будет его несколько тормозить относительно поля статора.

Что такое электрический генератор?

Генератор представляет собой эл машину, преобразовывающую механическую и тепловую энергии в электрическую. С этой точки зрения он является устройством прямо противоположным по принципу действия и режиму функционирования к асинхронному двигателю. Более того, наиболее распространенным типом электрогенераторов являются индукционные.

Как мы помним из выше описанной теории, такое становится возможным только при разности оборотов магнитных полей статора и ротора. Из это следует один закономерный вывод (учитывая также принцип обратимости, упомянутый вначале статьи) – теоретически возможно сделать генератор из асинхронника, кроме того, это задача, решаемая самостоятельно за счет перемотки.

Работа двигателя в режиме генератора

Любой асинхронный электрогенератор используется в качестве некоего трансформатора, где механическая энергия от вращения вала двигателя, преобразуется в переменный ток. Такое становится возможным тогда, когда его скорость становится выше синхронной (порядка 1500 об/мин). Классическую схему переделки и подключения двигателя в режиме электрогенератора с выработкой трехфазного тока можно легко собрать своими руками:

Чтобы достичь такой стартовой частоты вращения, необходимо приложить довольно большой крутящий момент (например, за счет подключения двигателя внутреннего сгорания в бензогенераторе или крыльчатки в ветряке). Как только частота вращения достигает значения синхронной, начинает действовать конденсаторная батарея, создающая емкостный ток. За счет этого происходит самовозбуждение обмоток статора и выработка электрического тока (режим генерирования).

Необходимым условием устойчивой работы такого электрогенератора с промышленной частотой сети 50 Гц, является соответствие его частотных характеристик:

  1. Скорость его вращения должна превышать асинхронную (частоту работы самого двигателя) на процент скольжения (от 2 до 10%),
  2. Значение скорости вращения генератора должно соответствовать синхронной скорости.

Как самостоятельно собрать асинхронный генератор?

Обладая полученными знаниями, смекалкой и умением работать с информацией, можно своими руками собрать/переделать работоспособный генератор из двигателя. Для этого необходимо совершить точные действия следующей последовательности:

  1. Вычисляется реальная (асинхронная) частота вращения двигателя, который планируется применить в качестве электрогенератора. Для определения оборотов на подключенном к сети агрегате можно использовать тахограф,
  2. Определяется синхронная частота двигателя, которая одновременно будет асинхронной для генератора. Здесь учитывается величина скольжения (2-10%). Допустим, измерения показали скорость вращения на уровне 1450 об/мин. Требуемая частота работы электрогенератора будет составлять:

nГЕН = (1,02…1,1)nДВ= (1,02…1,1)·1450 = 1479…1595 об/мин,

  1. Подбор конденсатора необходимой емкости (используются стандартные сравнительные таблицы данных).

На этом можно и поставить точку, но если требуется напряжение однофазной сети 220В, то режим функционирования такого устройства потребует внедрения в приведенную ранее схему понижающего трансформатора.

Виды генераторов на базе двигателей

Покупка штатного готового эл генератора – удовольствие отнюдь не из дешевых и вряд ли по карману практическому большинству наших сограждан. Прекрасной альтернативой может послужить самодельный генератор, его можно собрать при достаточных познаниях в области электротехники и слесарного дела. Собранное устройство может успешно использоваться в качестве:

  1. Электрогенератора с самозапиткой. Пользователь может своими руками получить устройство для выработки электроэнергии с длительным периодом действия вследствие самостоятельной подпитки,
  2. Ветрогенератора. В качестве движителя, необходимого для пуска двигателя, используется ветряк, который вращается под воздействием ветра,
  3. Генератора на неодимовых магнитах,
  4. Трехфазного бензогенератора,
  5. Однофазного маломощного генератора на двигателях электроприборов и т. д.

Переделка своими руками стандартного мотора в действующее генерирующее устройство – занятие увлекательное и очевидно экономящее бюджет. Таким образом можно переделать обычный ветряк, соединив его с двигателем для автономной выработки энергии.

Выбираем электрогенератор: что важно знать?

Энергией пронизана вся Вселенная, вопрос-как к ней подключиться… Типы генераторов электрической энергии. Электрическая энергия может генерироваться разнообразными методами, самые удобные и практичные мы используем в быту, остальные, возможно, ждут своего часа.

Самый, самый распространённый генератор в мире, это генератор автомобильный, а автомобилей уже больше миллиарда и количество их бодрыми шагами идёт ко второму. Физический принцип работы каждого механического генератора основан на явлении электромагнитной индукции, в случае пересечения проводником линий магнитного поля, в нём возникает электродвижущая сила (ЭДС). ЭДС так же как и напряжение измеряется в вольтах (Международная система единиц).

Принципиальный эффект генерации электрического тока обнаружил и описал английский физик Майкл Фарадей, в 1831 году. Знаменитый учёный заметил, что при прохождении проводника сквозь линии магнитного поля, на его концах возникает напряжение.

Прибор, который построил Фарадей ( диск Фарадея), можно назвать первым электрическим генератором, который из механического движения проводника (диска) в магнитном поле, извлекал электродвижущую силу (ЭДС). Установить, что изолированные проволочные проводники гораздо гораздо эффективней генерируют электрический ток, вращаясь в магнитном поле (или наоборот), уже было вопросом времени.

Генерация переменного тока

Самая распространённая конструкция генератора переменного тока, реализует вращающееся магнитное поле, сквозь неподвижную обмотку статора. Для этого на электромагниты ротора, через контактные кольца, подаётся постоянный ток.

Но для появления напряжения на выводах статора, необходимо ротору придать движение (вращение). Явление, когда подвижное магнитное поле вызывает в проводнике электродвижущую силу, называется электромагнитной индукцией. При вращении магнитное поле ротора поочередно пересекает обмотки (фазы) статора, вызывая в них движение электронов.

Фазы (обмотки) смещенные на статоре, друг относительно друга, на 120 градусов,

позволяют вырабатывать трёхфазный синусоидальный электрический ток. При вращении ротора 3000 оборотов в минуту, то есть 50 оборотов в секунду, получается частота колебаний переменного напряжения- 50 Герц. Но в автомобиле применяется постоянное напряжение.

Читать еще:  Чем отмыть ржавый двигатель

Для получения постоянного напряжения, в автомобильных электрических генераторах предусмотрен трёхфазный выпрямитель выполненный на шести силовых полупроводниковых диодах. Производители, чтобы защитить электронные узлы автомобиля от повышенного напряжения, применяют вместо диодов стабилитроны.

Стабилитроны, это те же диоды, но до определённого напряжения (25-30 вольт). При достижении предельного напряжения, стабилитроны начинают пропускать ток в обратном направлении, что оберегает электронику автомобиля от всплесков напряжения.

Бесщеточные генераторы

Синхронный электрический генератор обладает конструкционным изъяном, имя ему- щётки. Щётки изнашиваются и искрят при работе. При наличии в среде (или возможном наличии) горючих паров или газов, применение щёточных электрогенераторов иногда недопустимо. Решением стало создание, так называемых трёхмашинных ( бесщёточных) генераторов.

Предвозбудитель, возбудитель и генератор реализованы на одном валу и в одном корпусе. Предвозбудителем является бесщёточный синхронный генератор производящий ЭДС от постоянных магнитов, расположенных на валу.

Полученное напряжение передаётся на статор возбудителя.

Магнитное поле возбудителя индуцирует в обмотке ротора ток, который после выпрямления ( установленным на роторе трёхфазным выпрямителем) подаётся на основную обмотку возбуждения генератора. Со статора снимается полезное напряжение. Ничего не искрит, ничего не истирается. Срок эксплуатации трёхмашинного генератора ограничивается сроком службы электроизоляции и подшипников.

Электрогенераторы

Конструкция и принцип действия бензиновых, дизельных, газовых, инверторных генераторов примерно одинаковый и основан на преобразовании механической энергии в электрическую. Двигатель внутреннего сгорания приводит в движение ротор генератора, который и вырабатывает электрический ток с нужными нам параметрами.

Бензиновый генератор с двухтактным двигателем

Агрегаты данного типа обладают небольшим весом, габаритами, а также небольшой шумностью и стоимостью. Все эти характеристики объясняются тем, что для генераторов двигатели данного типа не делают большой мощности (около киловатта), соответственно и силовая электрическая установка будет небольшой

Особенности системы смазывания и работы двухтактного двигателя, определяют его небольшой ресурс, он вдвое меньше, чем у четырёхтактных собратьев. Специальное масло для двухтактных двигателей необходимо добавлять непосредственно в бензин, а так как срок годности у такой смеси около двух недель, изготовлять её необходимо с учётом этого срока.

Наличие масла в топливной смеси, существенно ухудшает параметры выхлопа и определяет месторасположение (вне помещения) агрегата во время эксплуатации.

Потребление топлива в двигателях данного типа выше , чем у четырёхтактных двигателей на 30-35 процентов. Применение электрогенераторов данного типа обусловлено простотой конструкции, небольшими размерами и малошумностью, что предполагает их использование в качестве переносного источника питания на природе, пикнике и т.д.

Бензиновые генераторы с четырёхтактными двигателями

Все преимущества четырёхтактного двигателя электрогенератора, перед двухтактным, потребитель оплачивает из своего кармана (как обычно). Экономия расхода топлива достигается за счёт использования раздельной системы смазки двигателя, также, это является причиной двукратного увеличения моторесурса.

Вес и габариты некоторых моделей могут достигать внушительных величин, естественно это соответствует возросшей мощности четырёхтактного двигателя внутреннего сгорания и выходных параметров электрогенератора. Электрическая мощность бензиновых генераторов может достигать 15 кВатт.

Сверх этого значения они становятся неконкурентоспособны своим дизельным собратьям. Дизельные электрогенераторы обладают повышенным моторесурсом и способностью к продолжительной непрерывной эксплуатации. Они, также, более экономичны, но характеризуются повышенной шумностью.

Система запуска

Обычно в электрогенераторах реализована возможность механического запуска, а в более крупных моделях предусмотрен запуск при помощи стартера запитанного от аккумулятора. В этих моделях также встроен выпрямитель на 12 вольт (для подзарядки аккумулятора) и вывод на клеммы для потребительского использования.

Электростанции высокого класса оснащаются системой самостоятельного запуска, в случае аварийного отключения электроэнергии.

Инверторные бензиновые генераторы

Обороты генераторов, работающих от двигателей внутреннего сгорания, к сожалению, не являются константой. Они изменяются, в зависимости от электрической нагрузки на генератор. Механическая система стабилизации, через обогащение топливной смеси,

выравнивает скорость вращения приводного вала, а значит и ротора генератора, но о качестве вырабатываемого электротока говорить не приходится.

Скачки напряжения для электроутюга и электрочайника не страшны, но электронная техника посложнее может пострадать. Обычный бензиновый электрогенератор, даже если он работает вхолостую (без нагрузки) потребляет топлива не намного меньше чем под нагрузкой. К тому же, производители прямо предупреждают о недопустимости долгой работы генераторов вхолостую.

Электронный блок устанавливаемый на выход генератора, решает проблему ненадлежащего расхода топлива и улучшения параметров электрического тока. В инверторе переменное напряжение преобразуется в постоянное, а потом снова в переменное, но уже с качественно улучшенными параметрами. При этом электроника управляет оборотами двигателя, существенно экономя топливо. За качество электрического тока и экономию, платить приходится потребителю. Инверторные бензиновые генераторы существенно дороже своих неуправляемых (электроникой) конкурентов.

Разновидности электростанций

При всём своём многообразии, бензогенераторы подразделяются на:

  • бытовые (для непрерывной работы не более 4- х часов в сутки)
  • профессиональные (для непрерывной работы не менее 8- и часов)
  • стационарные (как правило дизельные электростанции)

Класс бытовых электрогенераторов, условно ограничен мощностью в 4 кВатта.

Асинхронные генераторы

Отличаются простотой конструкции и неприхотливостью в эксплуатации.

Ротор асинхронного генератора не обладает обмоткой (короткозамкнут), что положительно сказывается при работе со сварочными аппаратами.

Синхронные генераторы

Обладают повышенной производительностью ( по сравнению с асинхронными) и качеством электрического тока в условиях меняющейся нагрузки. Синхронные генераторы являются самым распространённым типом генераторов.

Дополнительное оборудование применяемое в генераторах

  • Счётчик моточасов- производит контроль рабочего времени, позволяет планировать проведение регламентных работ.
  • Индикатор падения уровня масла- предотвращает работу двигателя в нештатном режиме (на сухую).
  • Вольтметр- определяет выдаваемое напряжение генератора.
  • Вывод 12 Вольт- позволяет подзаряжать автомобильный аккумулятор.
  • Розетки — две или три розетки для подключения нагрузки защищены автоматом, ток срабатывания которого определяется мощностью генератора.

Количество фаз генератора

При необходимости подключения трёхфазной нагрузки выбор очевиден, для бытового использования представляется проблематичным равномерное распределение нагрузки по всем трём фазам, так как разница не должна превышать 30 процентов.

Выбор мощности

При выборе мощности, следует продумать применение приборов с электродвигателями, пусковой ток которых превышает номинальный в 2-3 раза.

Запас мощности электрогенератора позволит избежать работы агрегата на пределе своих возможностей, что отрицательно сказывается на ресурсе.

Активная и реактивная мощность

Мощность бытовых приборов, в которых применены электродвигатели, правильно высчитывать учитывая реактивную составляющую, так как в обмотках двигателей происходит сдвиг фаз и дополнительные потери электроэнергии. Учитывать коэффициент мощности ( cos Ф ) необходимо для определения реальной

реактивной мощности прибора. Значение коэффициента мощности cos Ф может находиться в пределах от 0,3 до 1. Для простоты расчётов мощность электродвигателей можно принимать увеличенными в полтора раза.

Как самостоятельно сделать генератор из асинхронного двигателя?

Генератор асинхронного или индукционного типа представляет собой особую разновидность устройств, использующую переменный ток и имеющую способность воспроизведения электроэнергии. Главной особенностью является совершение довольно быстрых поворотов, которые делает ротор, по скорости вращения этого элемента он в значительной степени превосходит синхронную разновидность.

Читать еще:  Датчик оборота двигателя киа рио

  • Схема генератора из асинхронного двигателя ↓
  • Устройство генератора ↓
  • Изготовление генератора из двигателя ↓
  • Оценка уровня эффективности – выгодно ли это? ↓
  • Функционирование асинхронного двигателя как генератора ↓
  • Применение ↓
  • Советы по изготовлению и эксплуатации ↓

Одним из главных преимуществ является возможность использования данного устройства без существенных преобразований схемы или длительного настраивания.

Однофазную разновидность индукционного генератора можно подключить путем подачи на него необходимого напряжения, для этого потребуется подсоединение его к источнику питания. Однако, ряд моделей производит самовозбуждение, эта способность позволяет им функционировать в режиме, независимом от каких-либо внешних источников.

Осуществляется это благодаря последовательному приведению конденсаторов в рабочее состояние.

Схема генератора из асинхронного двигателя

схема генератора на базе асинхронного двигателя

В фактически любой машине электрического типа, сконструированной по типу генератора, имеются 2 разные активные обмотки, без которых невозможно функционирование устройства:

  1. Обмотка возбуждения, которая находится на специальном якоре.
  2. Статорная обмотка, которая отвечает за образование электрического тока, данный процесс происходит внутри нее.

Для того, чтобы наглядно представить и точнее понять все процессы, происходящие во время функционирования генератора, наиболее оптимальным вариантом будет подробнее рассмотреть схему его работы:

  1. Напряжение, которое подается от аккумулятора или любого иного источника, создает магнитное поле в якорной обмотке.
  2. Вращение элементов устройства вместе с магнитным полем можно реализовать разными способами, в том числе и вручную.
  3. Магнитное поле, вращающееся с определенной скоростью, порождает электромагнитную индукцию, благодаря чему в обмотке появляется электрический ток.
  4. Подавляющее большинство используемых на сегодняшний день схем не имеет возможностей для обеспечения якорной обмотки напряжением, это связано с наличием в конструкции короткозамкнутого ротора. Поэтому, вне зависимости от скорости и времени вращения вала, питающие клеммы устройства все равно будут обесточены.

Устройство генератора

Перед тем, как предпринимать какие-либо действия по переделыванию асинхронного двигателя в генератор, необходимо понять устройство данной машины, которое выглядит следующим образом:

  1. Статор, который оснащен сетевой обмоткой с 3 фазами, размещенной по его рабочей поверхности.
  2. Обмотка организована таким образом, что напоминает по своей форме звезду: 3 начальных элемента соединяются между собой, а 3 противоположных стороны соединены с контактными кольцами, которые не имеют никаких точек соприкосновений между собой.
  3. Контактные кольца имеют надежный крепеж к валу ротора.
  4. В конструкции имеются специальные щетки, которые не совершают никаких самостоятельных движений, но способствуют включению реостата с тремя фазами. Это позволяет осуществлять изменение параметров сопротивления обмотки, находящейся на роторе.
  5. Нередко, во внутреннем устройстве присутствует такой элемент, как автоматический короткозамыкатель, необходимый для того, чтобы закоротить обмотку и остановить реостат, находящийся в рабочем состоянии.
  6. Еще одним дополнительным элементом устройства генератора может являться специальное приспособление, которое разводит щетки и контактные кольца в тот момент, когда они проходят стадию замыкания. Подобная мера способствует значительному уменьшению потерь, отводимых на трение.

Изготовление генератора из двигателя

Фактически, любой асинхронный электродвигатель можно собственными руками переделать в устройство, функционирующее по типу генератора, который затем допускается использовать в быту. Для этой цели может подойти даже двигатель, взятый из стиральной машинки старого образца или любого иного бытового оборудования.

Чтобы данный процесс был благополучно реализован, рекомендуется придерживаться следующего алгоритма действий:

  1. Снять слой сердечника двигателя, благодаря чему будет образовано углубление в его структуре. Осуществить это можно на токарном станке, рекомендуется снять 2 мм. по всему сердечнику и проделать дополнительные отверстия с глубиной около 5 мм.
  2. Снять размеры с полученного ротора, после чего из жестяного материала изготовить шаблон в виде полосы, который будет соответствовать габаритам устройства.
  3. Установить в образовавшемся свободном пространстве неодимовые магниты, которые необходимо заранее приобрести. На каждый полюс потребуется не менее 8 магнитных элементов.
  4. Фиксацию магнитов можно осуществить при помощи универсального суперклея, но необходимо учитывать, что при приближении к поверхности ротора они будут менять свое положение, поэтому их необходимо крепко удерживать руками пока каждый элемент не приклеится. Дополнительно рекомендуется использовать во время этого процесса защитные очки, чтобы избежать попадания брызг клея в глаза.
  5. Обернуть ротор обычной бумагой и скотчем, который потребуется для ее фиксации.
  6. Торцовую часть ротора залепить пластилином, что обеспечит герметизацию устройства.
  7. После совершенных действий необходимо произвести обработку свободных полостей, между магнитными элементами. Для этого оставшееся между магнитами свободное пространство необходимо залить эпоксидной смолой. Удобнее всего будет прорезать специальное отверстие в оболочке, преобразовать его в горлышко и залепить границы при помощи пластилина. Внутрь можно заливать смолу.
  8. Дождаться полного застывания залитой смолы, после чего защитную бумажную оболочку можно устранить.
  9. Ротор необходимо зафиксировать при помощи станка или тисков, чтобы можно было провести его обработку, которая заключается в шлифовании поверхности. Для этих целей можно использовать наждачную бумагу со средним параметром зернистости.
  10. Определить состояние и предназначение проводов, выходящих из двигателя. Двое должны вести к рабочей обмотке, остальные можно обрезать, чтобы не запутаться в дальнейшем.
  11. Иногда процесс вращения осуществляется довольно плохо, чаще всего причиной являются старые износившиеся и тугие подшипники, в таком случае их можно заменить новыми.
  12. Выпрямитель для генератора можно собрать из специальных кремниевых диодов, которые предназначены именно для этих целей. Такж,е потребуется контроллер для зарядки, подходят фактически все современные модели.

После совершения всех названных действий, процесс можно считать завершенным, асинхронный двигатель был преобразован в генератор такого же типа.

Оценка уровня эффективности – выгодно ли это?

Генерация электрического тока электродвигателем вполне реальна и реализуема на практике, основной вопрос заключается в том, насколько это выгодно?

Сравнение осуществляется в первую очередь с синхронной разновидностью аналогичного устройства, в котором отсутствует электрическая цепь возбуждения, но несмотря на этот факт, его устройство и конструкция не являются более простыми.

Обуславливается это наличием конденсаторной батареи, являющейся крайне сложным в техническом плане элементом, который отсутствует у асинхронного генератора.

Основное преимущество асинхронного устройства заключается в том, что имеющиеся в наличии конденсаторы не требуют какого-либо обслуживания, поскольку вся энергия передается от магнитного поля ротора и тока, который вырабатывается в ходе функционирования генератора.

Создаваемый во время работы электрический ток фактически не имеет высших гармоник, что является еще одним значимым преимуществом.

Иных плюсов, кроме названных, асинхронные устройства не имеют, но зато обладают рядом существенных недостатков:

  1. В ходе их функционирования отсутствует возможность по обеспечению номинальных промышленных параметров электрического тока, который вырабатывается генератором.
  2. Высокая степень чувствительности даже к малейшим перепадам параметров рабочих нагрузок.
  3. При превышении параметров допустимых нагрузок на генератор, будет зафиксирована нехватка электричества, после чего подзарядка станет невозможной и процесс генерации будет остановлен. Для устранения этого недостатка, часто используют батареи со значительной емкостью, которые имеют особенность изменять свой объем в зависимости от величины оказываемых нагрузок.
Читать еще:  Ford scorpio датчик температуры двигателя

Электрический ток, который вырабатывается асинхронным генератором, подвержен частым изменениям, природа которых неизвестна, она носит случайный характер и никак не объясняется научными доводами.

Функционирование асинхронного двигателя как генератора

В соответствии с принципами, по которым функционируют все подобные машины, работа асинхронного двигателя после преобразования в генератор происходит следующим образом:

  1. После подключения конденсаторов к зажимам, на обмотке статоров происходит ряд процессов. В частности, в обмотке начинается движение опережающего тока, который создает эффект намагничивания.
  2. Только при соответствии конденсаторов параметрам необходимой емкости, происходит самовозбуждение устройства. Это способствует возникновению симметричной системы напряжения с 3 фазами на статорной обмотке.
  3. Значение итогового напряжения будет зависеть от технических возможностей используемой машины, а также от возможностей используемых конденсаторов.

Благодаря описанным действиям происходит процесс преобразования асинхронного двигателя короткозамкнутого типа в генератор с подобными характеристиками.

Применение

В быту и на производстве такие генераторы широко применяются в различных сферах и областях, но наиболее востребованы они для выполнения следующих функций:

  1. Использование в качестве двигателей для ветряных электростанций, это одна из наиболее популярных функций. Многие люди самостоятельно изготавливают асинхронные генераторы для задействования их в этих целях.
  2. Работа в качестве ГЭС с небольшой выработкой.
  3. Обеспечение питанием и электроэнергией городской квартиры, частного загородного дома или отдельного бытового оборудования.
  4. Выполнение основных функций сварочного генератора.
  5. Бесперебойное оснащение переменным током отдельных потребителей.

Советы по изготовлению и эксплуатации

Необходимо обладать определенными навыками и знаниями не только по изготовлению, но и по эксплуатации подобных машин, помочь в этом могут следующие советы:

  1. Любая разновидность асинхронных генераторов вне зависимости от сферы, в которой они применяются, является опасным устройством, по этой причине рекомендуется провести его изоляцию.
  2. В процессе изготовления устройства необходимо продумать монтаж измерительных приборов, поскольку потребуется получение данных о его функционировании и рабочих параметрах.
  3. Наличие специальных кнопок, с помощью которых можно управлять устройством, в значительной степени облегчает процесс эксплуатации.
  4. Заземление является обязательным требованием, которое необходимо реализовать до момента эксплуатации генератора.
  5. Во время работы, КПД асинхронного устройства может периодически снижаться на 30-50%, побороть возникновение этой проблемы не представляется возможным, поскольку этот процесс является неотъемлемой частью преобразования энергии.

Система электрооборудования автомобиля

Общее устройство генератора

Генератор переменного тока это элемент автомобиля, предназначенный для произведения электрической энергии путем преобразования механической энергии (вращение коленчатого вала) в электрическую энергию. Генераторы могут генерировать постоянный или переменный ток.

Генератор автомобиля используется, как источник питания для следующих электропотребителей: система зажигания, приборы освещения, бортовой компьютер, системы диагностики. Также генератор обеспечивает подзарядку аккумуляторной батареи (АКБ) во время движения автомобиля.

На сегодняшний день чаще всего используются генераторы переменного тока, которые хорошо себя зарекомендовали.

Как работает генератор?

Чтобы ответить на вопрос, — как работает генератор? — мы рассмотрим Принцип работы генератора.

Основа работы генератора заключается в использовании электродвижущей силы (ЭДС), которая образуется в прямоугольном контуре, вращающемся в однородном вращающемся магнитном поле.

Устройство простейшего генератора

Простейший генератор представляет собой обыкновенную прямоугольную рамку, которая размещена между магнитами с разными полюсами. Для снятия напряжения с вращающейся рамки используют токосъемные кольца.

В автомобилестроение используют электромагниты – катушки индуктивности или обмотки медного провода. При прохождении электрического тока через обмотку, последняя насыщается электромагнитными свойствами. Для возбуждения обмотки используется аккумуляторная батарея.

Устройство автомобильного генератора переменного тока

Автомобильный генератор состоит из корпуса с крышками, в которых имеются отверстия для вентиляции. Ротор устанавливается в подшипниках 2 и вращается в них. Привод ротора осуществляется путем ременной передачи (ремень одевается на шкив). Ротор выступает электромагнитом (обмоткой). Ток на обмотку поступает с помощью двух медных колец и графитных щеток, которые соединены с электронным регулятором. Электронный реле регулятор отвечает за напряжение на выходе, которое должно находиться в пределах 12 Вольт вне зависимости от частоты вращения шкива привода генератора. Реле регулятор может встраиваться в корпус, а может находиться отдельно.

Статор – представляет собой три медные обмотки, которые соединяются в треугольник. К точкам соединения обмоток подключается выпрямительный мост, который состоит из 6 полупроводниковых диодов, которые служат для преобразования переменного напряжения в постоянное.

Генера́тор (с латыни generator означает «производитель») — устройство, что вырабатывает электроэнергию, производит продукты или преобразует один вид энергии в другой.

Автомобильный генератор — устройство, которое преобразует механическую энергию вращения коленчатого вала двигателя автомобиля в электрическую.

Автомобильный генератор применяется для питания потребителей электроэнергии, таких как система зажигания, приборы освещения, бортовой компьютер автомобиля, системы диагностики, а также для зарядки аккумуляторной батареи (АКБ).

От надежности работы генератора зависит бесперебойность работы остальных систем автомобиля и других его компонентов. Мощность современного автомобильного генератора составляет 1 кВт.

Принцип работы автомобильного генератора

Первые автомобильные генераторы были генераторы постоянного тока. Они требовали много внимания к себе, что обуславливалось частым обслуживанием и контролем работы устройства.

Затем был придуманы диодные выпрямители, что значительно увеличило ресурс работы генератора и увеличило срок его работы. Генераторы с диодными выпрямителями тока стали называться генераторами переменного тока. На производство генератора переменного тока уходило меньше материалов, соответственно он стал легче и значительно меньше, а КПД вырос, обеспечивая более стабильный ток на выходе.

В современных иномарках используют синхронные трехфазные генераторы переменного тока, а в качестве выпрямителя – трехфазный выпрямитель Ларионова.

От поворота ключа до выдачи напряжения…

Во время поворота ключа замка зажигания в рабочее положение питание подается на обмотку возбуждения и генератор начинает отдавать ток в нагрузку. За управление током в обмотке возбуждения отвечает стабилизатор напряжения, который входит в щеточный узел генератора. Питание стабилизатора напряжения осуществляется от выпрямителя.

Ротор генератора приводится во вращение от коленчатого вала через шкив посредством клинового ремня. В обмотке возбуждения создается электромагнитное поле, которое индуцирует электрический ток в фазовых обмотках статора.

Выдаваемый ток – скачкообразный и зависит от частоты вращения коленчатого вала двигателя, поэтому для его стабилизации применяется стабилизатор напряжения.

Напряжение бортовой сети в работающей системе должно находится в пределах 13,8-14,2 В, что обеспечит нормальную подзарядку АКБ.

На крупногабаритных автомобилях используются автомобильные генераторы повышенной мощности 24 В.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector