6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое гашение поля синхронных двигателей

ПОНЯТИЕ О ПЕРЕХОДНЫХ ПРОЦЕССАХ В СИНХРОННЫХ МАШИНАХ

Внезапное короткое замыкание генератора. Процессы, возникающие в синхронных машинах при переходных режимах, например при внезапном коротком замыкании или резком изменении нагрузки, весьма сложны, что вызывает значительные трудности при их точном количественном расчете. Однако поведение синхронной машины при указанных режимах имеет очень большое практическое значение, так как переходные процессы могут вызвать повреждение машины, а следовательно, и значительные убытки, связанные с перерывом энергоснабжения объектов, получающих питание от генератора, или прекращением работы электроприводов с синхронными двигателями. Поэтому необходимо иметь общее представление о физических процессах, возникающих при переходных режимах, и установить хотя бы приближенно значение аварийных токов, возникающих при коротком замыкании.

Рассмотрим трехфазное короткое замыкание явнополюсного синхронного генератора, работавшего предварительно в режиме холостого хода. Осциллограммы тока якоря iк в одной из фаз генератора, тока возбуждения iв и тока iд в демпферной обмотке показаны на рис. 6.56. Ток якоря iк при переходном процессе имеет периодическую и апериодическую составляющие:

Можно предположить, что закон изменения тока якоря подобен изменению тока трансформатора при коротком замыкании, описываемый формулой (2.88). Однако более подробный анализ показывает, что процесс короткого замыкания в синхронном генераторе значительно сложнее, чем в трансформаторе.

Рис. 6.56. Графики изменения токов в обмотках якоря (а), возбуждения (б) и демпферной (в) при коротком замыкании

При коротком замыкании генератора с течением времени постепенно уменьшается амплитуда периодической составляю-щей тока генератора (рис. 6.57), в итоге она становится равной амплитуде установившегося тока короткого замыкания:

Iкm = √2Е /Xd = Em /Xd .
Рис. 6.57. График изменения тока в обмотке якоря при коротком замыкании

В первом полупериоде амплитуда периодической составляющей в 5 — 8 раз превышает величину Iкm . Это обусловлено тем, что в начальный момент процесса короткого замыкания ЭДС синхронного генератора близка к ЭДС холостого хода Еи только через 0,6—1,5 с становится равнойÉ = É + Éа = É0 — jÍк Xd .

Быстрому уменьшению ЭДС Е и потока Фрез препятствует появление переходного тока в обмотке возбуждения (рис. 6.56,б) вследствие того, что в ней индуцируется ЭДС eв = -wв dФрез /dt.
Переходный ток в обмотке возбуждения имеет максимум в начальный период короткого замыкания и постепенно затухает, уменьшаясь до установившегося значения тока, предшествующего короткому замыканию. В соответствии с этим снижаются поток Фрез и амплитуда периодической составляющей тока короткого замыкания. Наибольшее значение этой амплитуды

I’ уст m = Em /X’d .

где Xd — продольное переходное индуктивное сопротивление обмотки якоря; обычно значение его в относительных единицах Xd* = 0,2 ÷ 0,5.

Поскольку амплитуда периодической составляющей тока короткого замыкания постепенно затухает, приближаясь к установившемуся значению Iкт , и индуктивное сопротивление синхронной машины значительно больше активного, т. е. угол φк = arctg (Xк /Rк ) ≈ π/2, то периодическая составляющая

iк.п = [(I’уст m — I’кm)е -t/T’d + Iкm] sin (ωt + α — φк ) = =[(Ет /Х’d — Етd )е -t/T’d + Етd ] cos (ωt + α ).

Переходная постоянная времени Тd = 0,4 ÷ 3,0 с, определяющая затухание тока iк.п , зависит не только от параметров обмотки якоря, но и главным образом от параметров обмотки возбуждения. Если машина имеет демпферную обмотку, то в ней также возникает переходный ток (см. рис. 6.56, в), замедляющий уменьшение результирующего потока. При этом амплитуда тока к. з. больше, чем при отсутствии демпферной обмотки

I’ уст m = Ет /Х»d ,

где X«d — сверхпереходное индуктивное сопротивление по продольной оси; обычно X«d* = 0,12 ÷ 0,35. Затухание тока якоря определяется сверхпереходной постоянной времени Т«d = 0,03 ÷ 0,15 с, которая зависит в основном от параметров демпферной обмотки. С учетом этого периодическая составляющая тока к. з.

iк.п = [(Ет /Х»d — Ет /Х’d )е -t/T»d + [(Ет /Х’d — Ет /Х’d )е -t/T’d + + Етd ] cos (ωt + α ).

Поскольку ЭДС в фазах обмотки якоря сдвинуты по времени, начальный угол α для них различен, а следовательно, различны и токи фаз в переходном периоде.

Апериодические составляющие токов в фазах якоря создают неподвижное в пространстве магнитное поле, которое пересекает вращающийся ротор. Вследствие этого в обмотках ротора возникают периодические ЭДС и токи. Так как по продольной и поперечной осям ротор несимметричен (из-за разных величин воздушного зазора в явнополюсных машинах и из-за того, что по продольной оси имеется обмотка возбуждения), то в апериодическом токе якоря появляется переменная составляющая двойной частоты:

где X«q — поперечное сверхпереходное индуктивное сопротивление обмотки якоря; Та = (Х«d +X»q)/(ωRa ) — постоянная времени апериодического тока якоря.

При наличии демпферной обмотки X«q обычно мало отличается от Х«d и тогда

iк = iк.п + iк.а ≈ [(Em+Em)е -t/T»d + (EmEm)е -t/T’d +
X«dXdXdXd

Значение тока к. з. максимально в той фазе, где α = 0 (примерно через полпериода после начала короткого замыкания); это значение называют ударным током. Если в формуле (6.61) пренебречь затуханием тока, то

I ≈ 2Em /Х»d .

Поскольку постоянные времени Т«d и Тd малы, некоторое затухание все же происходит. По ГОСТу значение ударного тока

I = 1,05•1,8 •√2Uном /Х»d ,

где коэффициентами 1,8 и 1,5 учитываются соответственно затухание и возможность работы при повышенном напряжении. Значение ударного тока не должно превышать амплитуду номинального тока якоря более чем в 15 раз. Так как значения X«d и Хd сравнительно малы, то для ограничений ударного тока в цепь якоря иногда ставят специальный реактор.

При коротком замыкании синхронного генератора возникает также знакопеременный момент на валу ротора, который образуется в результате взаимодействия неизменного по направлению магнитного поля, создаваемого апериодической составляющей тока якоря с МДС возбуждения. В наиболее неблагоприятных случаях мгновенные значения этого момента достигают 10-кратного значения по сравнению с номинальным значением, что необходимо учитывать при механических расчетах деталей машины и надежности ее крепления к фундаменту.

Гашение магнитного поля. При коротких замыканиях во внешней цепи срабатывает релейная защита, которая отключает синхронный генератор от присоединенной к нему нагрузки или от сети. Однако при внутренних коротких замыканиях в генераторе отключение его от внешней цепи не ликвидирует режим короткого замыкания, так как в обмотке якоря индуцируется ЭДС и по ней продолжает проходить большой ток. Чтобы устранить режим короткого замыкания в этом случае, необходимо резко уменьшить магнитный поток машины, для чего следует прекратить прохождение тока по ее обмотке возбуждения. Операции, необходимые для прекращения прохождения тока по обмотке возбуждения синхронной машины при аварийных режимах, называют гашением магнитного поля.

Гашение магнитного поля в принципе возможно путем быстрого размыкания цепи обмотки возбуждения с помощью соответствующего контакта автоматического выключателя (автомата гашения поля). Однако при этом в обмотке возбуждения индуцируется ЭДС самоиндукции
eв = — Lв diв /dt . Так, как обмотка возбуждения имеет значительную индуктивность Lв , то ЭДСeвможет создавать большие перенапряжения, опасные для изоляции обмотки. Поэтому применяют способы гашения магнитного поля, обеспечивающие уменьшение тока возбуждения с некоторой ограниченной скоростью, при которой не возникают чрезмерные перенапряжения.

Рис. 6.58. Схемы возбуждения синхронных генераторов с устройствами гашения поля: а — с гасящим резистором; б — с автоматом гашения поля и дугогасительной решеткой; 1 —регулировочный реостат; 2 — обмотка возбуждения возбудителя; 3 — якорь возбудителя; 4, 5, 10 — контакты автомата гашения поля; 6 — гасящий резистор; 7 —обмотка возбуждения генератора; 8 — якорь генератора; 9 — выключатель в цепи якоря; 11 — дугогасительная решетка автомата гашения поля

В настоящее время применяют две схемы гашения поля. В одной из них (рис. 6.58, а) обмотка возбуждения отключается автоматом гашения поля от возбудителя и замыкается на гасящий резистор, сопротивление которого в 4—5 раз больше сопротивления обмотки возбуждения. При таком значении сопротивления резистора ток к. з. не создает в генераторе значительных внутренних повреждений, а возникающие перенапряжения находятся в допустимых пределах. Гасящий резистор должен быть рассчитан на длительный ток, равный 0,2Iв.ном для турбогенераторов и 0,05Iв.ном для гидрогенераторов. В другой схеме (рис. 6.58,б) скорость уменьшения тока возбуждения ограничивается путем удлинения времени горения в автомате гашения поля, который размыкает цепь обмотки возбуждения. Этот автомат кроме главных контактов 4 имеет специальные дугогасительные контакты 10, при размыкании которых возникающая дуга выдувается на дугогасительную решетку и гасится в ней. Соответствующим выбором конструкций дугогасительной камеры удается получить умеренную скорость уменьшения тока. При использовании указанных схем гашения поля требуется усиливать изоляцию обмотки возбуждения, на которую в нормальных условиях подается напряжение поряд-ка 50- 400 В.

Гашение поля мало влияет на характер переходного процесса нарастания тока якоря при коротких замыканиях, так как этот ток достигает максимального значения Iуд примерно через полпериода (при частоте 50 Гц через 0,01 с), а за это время защита не успевает сработать. Оно лишь уменьшает время, в течение которого по обмотке проходит ток к. з. и, следовательно, снижает вероятность повреждения машины этим током.

Рис. 6.59. Векторная диаграмма (а) и угловая характеристика (б) синхронного генератора при качаниях ротора

Резкие изменения нагрузки.При резких изменениях нагрузки синхронной машины, работающей параллельно с сетью, возникают колебания ротора около установившегося значения угла θ, называемые качаниями. Допустим, что машина работает при некоторой нагрузке и развивает электромагнитный момент M1 = MВН1, соответствующий углу θ1 (рис. 6.59, а и б). Если резко увеличить внешний момент, приложенный к валу ротора, до величины МВН2, при которой возрастает отдаваемая машиной электрическая (в генераторе) или механическая (в двигателе) мощность, то угол в будет постепенно увеличиваться до величины θ2, соответствующей новому значению электромагнитного момента М2 = МВН2 . Однако из-за инерции ротора угол θ, увеличиваясь, достигает значения θ3 > θ2, а затем под действием синхронизирующего момента начинает уменьшаться до величины θ4

Онлайн журнал электрика

Статьи по электроремонту и электромонтажу

  • Справочник электрика
    • Бытовые электроприборы
    • Библиотека электрика
    • Инструмент электрика
    • Квалификационные характеристики
    • Книги электрика
    • Полезные советы электрику
    • Электричество для чайников
  • Справочник электромонтажника
    • КИП и А
    • Полезная информация
    • Полезные советы
    • Пусконаладочные работы
  • Основы электротехники
    • Провода и кабели
    • Программа профессионального обучения
    • Ремонт в доме
    • Экономия электроэнергии
    • Учёт электроэнергии
    • Электрика на производстве
  • Ремонт электрооборудования
    • Трансформаторы и электрические машины
    • Уроки электротехники
    • Электрические аппараты
    • Эксплуатация электрооборудования
  • Электромонтажные работы
    • Электрические схемы
    • Электрические измерения
    • Электрическое освещение
    • Электробезопасность
    • Электроснабжение
    • Электротехнические материалы
    • Электротехнические устройства
    • Электротехнологические установки

Типовые схемы пуска синхронных электродвигателей

Синхронные движки получили обширное распространение в индустрии для электроприводов, работающих с неизменной скоростью (компрессоров, насосов и т.д.). В ближайшее время, вследствие возникновения преобразовательной полупроводниковой техники, разрабатываются регулируемые синхронные электроприводы.

Плюсы синхронных электродвигателей

Синхронный движок несколько труднее, чем асинхронный, но обладает рядом
преимуществ, что позволяет использовать его в ряде всевозможных случаев заместо асинхронного.

1. Главным достоинством синхронного электродвигателя является возможность
получения рационального режима по реактивной энергии , который осуществляется
методом автоматического регулирования тока возбуждения мотора. Синхронный
движок может работать, не потребляя и не отдавая реактивной энергии в сеть,
при коэффициенте мощности ( cos фи)
равным единице.Если для предприятия нужна выработка реактивной энергии, то
с и нхронный электродвигатель, работая с перевозбуждением,
может отдавать ее в сеть.

2. Синхронные электродвигатели наименее чувствительны к
колебаниям напряжения сети, чем асинхронные электродвигатели. Их
наибольший момент пропорционален напряжению сети, в то время как критичный
момент асинхронного электродвигателя пропорционален квадрату напряжения.

3. Синхронные электродвигатели имеют высшую перегрузочную
способность. Не считая того, перегрузочная способность синхронного мотора
может быть автоматом увеличена за счет увеличения тока возбуждения, к примеру,
при резком краткосрочном повышении нагрузки на валу мотора.

4. Скорость вращения синхронного мотора остается
постоянной при хоть какой нагрузке на валу в границах его перегрузочной возможности.

Методы запуска синхронного электродвигателя

Вероятны последующие методы запуска синхронного мотора: асинхронный запуск на полное напряжение сети и запуск на пониженное напряжение через реактор либо автотрансформатор.

Асинхронный запуск синхронного электродвигателя

Схема возбуждения синхронного мотора с глухоподключенным возбудителем достаточно ординарна и может применяться в этом случае, если пусковые токи не вызывают падения напряжения в сети больше допустимого и статистический момент нагрузки Мс

Асинхронный запуск синхронного мотора делается присоединением статора к сети. Движок разгоняется как асинхронный до скорости вращения, близкой к синхронной.

В процессе асинхронного запуска обмотка возбуждения замыкается на разрядное сопротивление, чтоб избежать пробоя обмотки возбуждения при пуске, потому что при малой скорости ротора в ней могут появиться значимые перенапряжения. При скорости вращения, близкой к синхронной, срабатывает контактор КМ (цепь питания контактора на схеме не показана), обмотка возбуждения отключается от разрядного сопротивления и подключается к якорю возбудителя. Запуск завершается.

Типовые узлы схем возбуждения синхронного мотора

Слабеньким местом большинства электроприводов с синхронными движкам, существенно
усложняющим эксплуатацию и повышающим издержки, многие годы являлся
электромашинный возбудитель. В текущее время обширное распространение для
возбуждения синхронных движков находят тиристорные возбудители . Они
поставляются в комплектном виде.

Тиристорные возбудители синхронных электродвигателей более надежны и имеют
более высочайший к.п.д. по сопоставлению с электромашинными возбудителями. С помощью их
просто решаются вопросы рационального регулирования тока возбуждения для
поддержания всепостоянства cos фи, напряжения на шинах,
от которых питается синхронный движок, также ограничение токов ротора и
статора синхронного мотора в аварийных режимах.

Тиристорными возбудителями оснащается большая часть выпускаемых больших
синхронных электродвигателей. Они делают обычно последующие функции:

  • запуск синхронного мотора с включенным в цепь обмотки возбуждения
    пусковым резистором,
  • бесконтакное отключение пускового резистора после окончания запуска
    синхронного мотора и защиту его от перегрева,
  • автоматическую подачу возбуждения в подходящий момент запуска синхронного
    электродвигателя,
  • автоматическое и ручное регулирование тока возбуждения
  • нужную форсировку возбуждения при глубочайших посадках напряжения на
    статоре и резких набросах нагрузки на валу синхронного мотора,
  • резвое гашение поля синхронного мотора по мере надобности понижения
    тока возбуждения и отключениях электродвигателя,
  • защиту ротора синхронного мотора от долговременной перегрузки по току и
    маленьких замыканий.

Если запуск синхронного электродвигателя делается на пониженное напряжение, то при «легком» пуске возбуждение подается до включения обмотки статора на полное напряжение, а при «тяжелом» пуске подача возбуждения происходит при полном напряжении в цепи статора.
Может быть подключение обмотки возбуждения мотора к якорю возбудителя поочередно с разрядным сопротивлением.

Процесс подачи возбуждения синхронному движку автоматизируется 2-мя методами: в функции скорости и в функции тока.

На схеме, приведенной на рисунке, подача возбуждения синхронному движку осуществляется при помощи электрического реле неизменного тока КТ (реле времени с гильзой). Катушка реле врубается на разрядное сопротивление Rразр через диодик VD. При подключении обмотки статора к сети в обмотке возбуждения мотора наводится ЭДС. По катушке реле КТ проходит выпрямленный ток, амплитуда и частота импульсов которого зависят от скольжения.

Подача возбуждения синхронному движку в функции скорости

При пуске скольжение S = 1. По мере разгона мотора оно миниатюризируется и интервалы меж выпрямленными полуволнами тока растут; магнитный поток равномерно понижается по кривой Ф(t).

При скорости, близкой к синхронной, магнитный поток реле успевает добиться значения потока отпадания реле Фот в момент, когда через реле КТ ток не проходит. Реле теряет питание и своим контактом делает цепь питания контактора КМ (на схеме цепь питания контактора КМ не показана).

Разглядим контроль подачи возбуждения в функции тока при помощи реле тока. При пусковом токе срабатывает реле тока КА и размыкает собственный контакт в цепи контактора КМ2.

График конфигурации тока и магнитного потока в реле времени КТ

Контроль подачи возбуждения синхронному движку в функции тока

При скорости, близкой к синхронной, реле КА отпадает и замыкает собственный контакт в цепи контактора КМ2. Контактор КМ2 срабатывает, замыкает собственный контакт в цепи возбуждения машины и шунтирует резистор Rразр

Использование систем саморегулирования судовых синхронных генераторов

Содержание

  1. Техническое использование.
  2. Включение.
  3. Выключение.
Техническое использование.

При подготовке генератора к работе необходимо:

  • тщательно осмотреть генератор и элементы системы самовозбуждения и убедиться в отсутствии на них и внутри них посторонних предметов;
  • проверить наличие щеток на соответствующих местах, плотность их прилегания, надежность крепления щеточных токоведущих кабелей («канатиков») и состояние контактных колец; в случае необходимости пришлифовать щетки; убедиться в том, что они легко скользят в обоймах щеткодержателей и не свисают над краями контактных колец; при соприкосновении щеточных «канатиков» с корпусом устранить его;
  • проверить сопротивление изоляции статора и ротора генератора и системы самовозбуждения мегаомметром, напряжение которого должно быть не выше 500 В;
  • обеспечить нормальное поступление смазки в подшипники скольжения генератора или убедиться в наличии смазки у подшипников качения;
  • при наличии воздухоохладителя открыть вентиль охлаждающей воды; при автономной системе воздушного охлаждения силовых выпрямителей пустить ее в ход;
  • убедиться в том, что автомат главной цепи генератора отключен; при наличии рубильника гашения поля убедиться в том, что гашение поля снято;

В случае первого пуска после монтажа, ремонта или длительного бездействия необходимо, кроме того:

  • проверить зазоры между каждым полюсом ротора генератора и внутренней поверхностью пакета статора в трех точках по окружности; у генераторов размер этого зазора может отклоняться от расчетного значения, указанного в формуляре, не более чем на 10%;
  • провернуть ротор генератора на 1-2 оборота, следя при этом за проворачиванием первичного двигателя и ротора;
  • проверить правильность и надежность присоединения кабелей к элементам системы саморегулирования и на панели вывода генератора;
  • проверить надежность присоединения заземляющих шин (перемычек).
Включение.

Для этого необходимо:

  • убедиться в том, что автоматический выключатель главной цепи генератора отключен, а аппарат гашения поля замкнут;
  • поставить в известность вахтенного механика о готовности к пуску; пустить первичный двигатель и довести частоту его , вращения до номинальной;
  • разомкнуть аппарат гашения поля, возбудить генератор;
  • после того как генератор возбудится, дать ему поработать на холостом ходу не менее 15 мин;
  • убедиться в том, что при разгоне первичного двигателя напряжение генератора автоматически увеличивается и достегает установившегося номинального значения при номинальной частоте;
  • при наличии в системе саморегулирования генератора переключателя режимов убедиться в том, что он находится в необходимом положении;
  • включить главный автоматический выключатель, загрузить генератор и в случае необходимости подрегулировать напряжение;
  • проверить показания приборов (амперметра, вольтметра, частотомера);
  • если запускаемый генератор должен работать параллельно с другим, работающим на общую сеть, то при точной синхронизации необходимо:
  • запустить и возбудить генератор, как было сказано ранее;
  • путем воздействия на регулятор частоты вращения первичного двигателя установить частоту тока генератора, равную частоте тока сети или другого генератора;
  • путем воздействия на резистор уставки напряжения ч установить напряжение генератора равным напряжению сети или другого генератора;
  • включить генератор на сеть в момент синхронизма, определив его по синхронизационному устройству;
  • воздействуя на регулятор частоты вращения первичного двигателя, перевести на генератор такую активную нагрузку, чтобы отношение ее к мощности генератора было таким же, как и у другого параллельно работающего генератора;
  • при необходимости и наличии резистора уставки напряжения распределить реактивную нагрузку так, чтобы отношение тока нагрузки генератора к его номинальному току было таким же, как и у другого параллельно работающего генератора.
  • Контроль распределения нагрузок между параллельно работающими генераторами ведется по показаниям ваттметров или фазометров, установленных на щите. При пропорциональном распределении нагрузок отношение показаний ваттметров должно быть таким же, как и отношение номинальных мощностей генераторов, а показания фазометров должны быть одинаковыми.
  • Во время работы саморегулируемых генераторов необходимо следить за тем, чтобы показания приборов не превышали пределов, указанных в формуляре. Температуры обмоток, генератора и элементов системы саморегулирования не должны превышать допустимых.
  • Генератор под нагрузкой должен работать без искрения под щетками; температура подшипников и вибрация не должны быть выше нормальных. Необходимо вести наблюдение за работой подшипников генератора. Шум их при нормальной работе должен быть равномерным. При обнаружении ненормальностей в работе генератора или системы самовозбуждения следует выяснить причины этого и, если необходимо, снять нагрузку, остановить генератор и устранить неисправность.
Выключение.

Для остановки генератора, работающего параллельно с другим, следует сначала разгрузить его или перевести его нагрузку на генератор, который будет продолжать работу. Для этого необходимо увеличить подачу пара (топлива) первичному двигателю генератора, на который хотят перевести нагрузку, и одновременно несколько повысить возбуждение последнего.

В то же время уменьшают подачу пара (топлива) первичному двигателю останавливаемого генератора и одновременно несколько понижают возбуждение этого генератора. После перевода нагрузки отключают главный автоматический выключатель останавливаемого генератора и останавливают первичный двигатель.

После остановки первичного двигателя осматривают генератор и систему саморегулирования.

При наличии рубильника гашения поля рекомендуется перед остановкой первичного двигателя снизить напряжение путем установки этого рубильника в положение гашения поля.

Генераторы и системы их самовозбуждения и саморегулирования должны постоянно находиться в состоянии готовности к работе. Для этого должно быть обеспечено надлежащее обслуживание генераторов и указанных систем во время их работы и после остановки.

Особенно тщательное обслуживание необходимо при судовых автоматизированных электроэнергетических системах, где генераторы запускаются автоматически в любое время и где они всегда должны находиться в состоянии готовности к, пуску и работе.

Обслуживание систем самовозбуждения и саморегулирования не представляет большой сложности вследствие отсутствия у них механических трущихся частей. Однако для предотвращения возможных неисправностей этих систем требуется внимательное наблюдение за ними.

В процессе обслуживания систем самовозбуждения и саморегулирования необходимо:

  • периодически наблюдать за температурой нагрева компаундирующих трансформаторов тока, реакторов, трансформаторов напряжения, магнитных усилителей и т. д. и особенно внимательно следить за температурой воздуха, выходящего из блока силовых выпрямителей;
  • обтирать чистой ветошью наружные и доступные внутренние поверхности генератора и указанных элементов систем самовозбуждения и саморегулирования; особенно тщательно поддерживать чистоту обмоток генератора и элементов системы, для чего систематически обтирать их и продувать сжатым до 0,2 МПа воздухом, проверять состояние верхнего покрова изоляции обмоток. Случайно поврежденные части обмоток тщательно изолировать и покрыть изоляционным лаком;
  • если элементы системы саморегулирования (реактор, трансформаторы и пр.) имеют специальные вентиляционные каналы, следить, чтобы эти каналы не были загрязнены или забиты;
  • если блоки выпрямителей имеют искусственное охлаждение, осуществляемое охлаждающим генератор воздухом (при установке блоков в корпусе генератора) или при помощи отдельного вентилятора, следить, чтобы охлаждение блоков было непрерывным, иначе они могут выйти из строя из-за перегрева;
  • систематически проверять состояние контактов и следить за тем, чтобы контактные соединения были надежно затянуты. При наличии на контактах окислов или оплавлений зачистить их;
  • проверять затяжку пакетов трансформаторной стали в сердечниках компаундирующего трансформатора тока, реакторов и пр.
  • Наряду с этим большое внимание необходимо уделять техническому обслуживанию элементов цепи самовозбуждения генераторов — контактных колец обмотки ротора, щеткодержателей и щеток ротора, контактных креплений всей цепи, блоков силовых выпрямителей, поскольку от этого зависит безотказность самовозбуждения генератора при его запуске и во время работы.
  • Следует периодически тщательно осматривать блоки выпрямителей и их элементы- шайбы (у селеновых выпрямителей) и диоды (вентили) (у кремниевых выпрямителей).

Литература

Судовой механик: Справочник. Том 3 — Фока А.А. (2016)

Что такое гашение поля синхронных двигателей

Воропаев Е.Г.
Электротехника

Если в рассмотренных выше асинхронных машинах ротор имел частоту вращения, отличную от частоты вращения магнитного поля статора, то в синхронных эти частоты равны между собой.
Синхронные машины могут работать как генераторами, так и двигателями.
В зависимости от типа привода синхронные генераторы получили и свои названия.
Турбогенератор, например, — это генератор, приводимый в движение паровой турбиной, гидрогенератор вращает водяное колесо, а дизель — генератор механически связан с двигателем внутреннего сгорания.
Синхронные двигатели широко применяют для привода мощных компрессоров, насосов, вентиляторов.
Синхронные микродвигатели используют для привода лентопротяжных механизмов регистрирующих приборов, магнитофонов и т.д.

6.1. КОНСТРУКЦИЯ И ПРИНЦИП ДЕЙСТВИЯ СИНХРОННОГО ГЕНЕРАТОРА

Статор синхронной машины по конструкции не отличается от статора асинхронного двигателя. В пазах статора размещается трехфазная, двухфазная или однофазная обмотки.
Заметное отличие имеет ротор, который принципиально представляет собой постоянный магнит или электромагнит.
Это налагает особые требования на геометрическую форму ротора. Любой магнит имеет полюса, число которых может быть два и более.
На рис. 6.1.1 приведены две конструкции генераторов, с тихоходным и быстроходным ротором.

Быстроходными бывают, как правило, турбогенераторы. Количество пар магнитных полюсов у них равно единице. Чтобы такой генератор вырабатывал электрический ток стандартной частоты f = 50 Гц, его необходимо вращать с частотой

На гидроэлектростанциях вращение ротора зависит от движения водяного потока. Но и при медленном вращении такой генератор должен вырабатывать электрический ток стандартной частоты f = 50 Гц.
Поэтому для каждой гидроэлектростанции конструируется свой генератор, на определенное число магнитных полюсов на роторе.
В качестве примера приведем параметры синхронного генератора, работающего на Днепровской ГЭС.
Водяной поток вращает ротор генератора с частотой n = 33,3 об / мин. Задавшись частотой f = 50 Гц, определим число пар полюсов на роторе:

Принцип действия синхронного генератора основан на явлении электромагнитной индукции. Ротор с магнитными полюсами создает вращающееся магнитное поле, кото-рое, пересекая обмотку статора, наводит в ней ЭДС. При подключении к генератору нагрузки генератор будет являться источником переменного тока.

6.2. ЭДС СИНХРОННОГО ГЕНЕРАТОРА

Как было показано выше, величина наводимой в обмотке статора ЭДС количественно связана с числом витков обмотки и скорости изменения магнитного потока:

Переходя к действующим значениям, выражение ЭДС можно записать в виде:

где n — частота вращения ротора генератора,
Ф — магнитный поток,
c — постоянный коэффициент.
При подключении нагрузки напряжение на зажимах генератора в разной степени меняется. Так, увеличение активной нагрузки не оказывает заметного влияния на напряжение. В то же время индуктивная и емкостная нагрузки влияют на выходное на-пряжение генератора. В первом случае рост нагрузки размагничивает генератор и снижает напряжение, во втором происходит его подмагничивание и повышение напряжения. Такое явление называется реакцией якоря.
Для обеспечения стабильности выходного напряжения генератора необходимо регулировать магнитный поток. При его ослаблении машину надо подмагнитить, при увеличении — размагнитить. Делается это путем регулирования тока, подаваемого в обмотку возбуждения ротора генератора.

6.3. СИНХРОННЫЙ ДВИГАТЕЛЬ

6.3.1. КОНСТРУКЦИЯ И ПРИНЦИП ДЕЙСТВИЯ

Конструкция синхронного двигателя такая же, как и у синхронного генератора.
При подаче тока в трехфазную обмотку статора в нем возникает вращающееся магнитное поле. Частота вращения его определяется формулой:

где f — частота тока питающей сети,
р — число пар полюсов на статоре.
Ротор, являющийся часто электромагнитом, будет строго следовать за вращаю-щимся магнитным полем, т.е. его частота вращения n2 = n1.
Рассмотрим принцип действия синхронного двигателя на следующей условной модели (рис. 6.3.1.). Пусть магнитное поле статора будет смоделировано системой вращающихся магнитных полюсов N — S.

Ротор двигателя тоже представляет собой систему электромагнитов S — N, кото-рые «сцеплены» с полюсами на статоре. Если нагрузка на двигателе отсутствует, то оси полюсов статора будут совпадать с осями полюсов ротора ( = 0).
Если же к ротору подключена механическая нагрузка, то оси полюсов статора и ротора могут расходиться на некоторый угол .
Однако «магнитное сцепление» ротора со статором будет продолжаться, и частота вращения ротора будет равна синхронной частоте статора (n2 = n1). При больших значениях ротор может выйти из «сцепления» и двигатель остановится.
Главное преимущество синхронного двигателя перед асинхронным — это обеспечение синхронной скорости вращения ротора при значительных колебаниях нагрузки.

6.3.2. СИСТЕМА ПУСКА СИНХРОННОГО ДВИГАТЕЛЯ

Как мы показали выше, синхронное вращение ротора обеспечивается «магнитным сцеплением» полюсов ротора с вращающимся магнитным полем статора.
В первый момент пуска двигателя вращающееся магнитное поле статора возникает практически мгновенно. Ротор же, обладая значительной инерционной массой, прийти в синхронное вращение сразу не сможет. Его надо «разогнать» до подсинхронной скорости каким-то дополнительным устройством.
Долгое время роль разгонного двигателя играл обычный асинхронный двигатель, механически соединенный с синхронным.
Ротор синхронного двигателя приводится во вращение до подсинхронной скорости. Далее двигатель сам втягивается в синхронизм.
Обычно мощность пускового двигателя составляет 5-15 % от мощности синхронного двигателя. Это позволяет пускать в ход синхронный двигатель только вхолостую или при малой нагрузке на валу.
Применение пускового двигателя мощностью, достаточной для пуска синхронного двигателя под нагрузкой делает такую установку громоздкой и дорогой.
В последнее время используется так называемая система асинхронного пуска синхронных двигателей. С этой целью в полюсные наконечники забивают стержни, напоминающие собою короткозамкнутую обмотку асинхронного двигателя (рис. 6.3.2.1).

В начальный период пуска синхронный двигатель работает как асинхронный, а в последующем — как синхронный. В целях безопасности обмотку возбуждения в начальном периоде пуска закорачивают, а на заключительном подключают к источнику по-стоянного тока.

6.4. РЕАКТИВНЫЙ СИНХРОННЫЙ ДВИГАТЕЛЬ

В лабораторной практике, в быту и в маломощных механизмах применяют так называемые реактивные синхронные двигатели.
От обычных классических машин они отличаются лишь конструкцией ротора. Ротор здесь не является магнитом или электромагнитом, хотя по форме напоминает собой полюсную систему.
Принцип действия реактивного синхронного двигателя отличен от рассмотренного выше. Здесь работа двигателя основана, на свободной ориентации ротора таким образом, чтобы обеспечить магнитному потоку статора лучшую магнитную проводимость (рис. 6.4.1).

Действительно, если в какой-то момент времени максимальный магнитный поток будет в фазе А — X, то ротор займет положение вдоль потока ФА. Через 1/3 периода максимальным будет поток в фазе В — У. Тогда ротор развернется вдоль потока ФВ. Еще через 1/3 периода произойдет ориентация ротора вдоль потока. ФС. Так непрерывно и синхронно ротор будет вращаться с вращающимся магнитным полем статора.
В школьной практике иногда, при отсутствии специальных синхронных двигателей, возникает необходимость в синхронной передаче.
Эту проблему можно решить с помощью обычного асинхронного двигателя, если придать ротору следующую геометрическую форму (рис. 6.4.2).

6.5. ШАГОВЫЙ ДВИГАТЕЛЬ

Этот тип двигателя является машиной постоянного тока, хотя принцип действия его напоминает синхронный реактивный двигатель.
Как видно из рис. 6.5.1, статор двигателя имеет шесть пар выступающих полюсов.

Каждые две катушки, расположенные на противоположных полюсах статора, образуют обмотку управления, включаемую, в сеть постоянного тока. Ротор — двухполюсный.
Если подключить к источнику постоянного тока катушки полюсов 1 — 1′, то ротор расположится вдоль этих полюсов. Если задействовать катушки полюсов 2 — 2′, а ка-тушки полюсов 1 — 1′ обесточить, то ротор повернется и займет положение вдоль полю-сов 2 — 2′. Такой же поворот ротора произойдет, если включить в сеть катушки полюсов 3 — 3′. Так, шагами, ротор будет «следовать» за своей обмоткой управления.
Преимуществом шаговых двигателей является то, что в них совершенно отсутствует «самоход». Они поворачиваются и строго фиксируются с шагом, пропорциональ-ным числу полюсов на статоре. Это качество делает его незаменимым в особо точных механизмах (для привода часов, механизмов подачи ядерного топлива в реакторах, в станках с ЧПУ и т.д.).
Управление шаговыми двигателями ведется с применением различных электронных устройств (триггеров Шмидта и др.).

6.6. КОЛЛЕКТОРНЫЙ ДВИГАТЕЛЬ ПЕРЕМЕННОГО ТОКА

Безколлекторные асинхронные и синхронные двигатели при многих положительных качествах имеют существенные недостатки. Они не допускают достаточно плавного и экономичного регулирования вращения.
Этот пробел частично восполняют коллекторные двигатели переменного тока.
Коллекторные двигатели бывают однофазными и трехфазными.
Ротор однофазного коллекторного двигателя выполнен в виде цилиндра с фазными обмотками, статор — явнополюсный.
Так как обмотка полюсов статора, подключаемая к сети переменного тока, создает пульсирующее магнитное поле, то все элементы магнитной цепи машины набираются из отдельных листов электротехнической стали.
Вращающий момент в однофазном коллекторном двигателе создается взаимодействием токов в обмотке ротора с магнитным потоком полюсов. На рис. 6.6.1- показана схема подключения к сети коллекторного двигателя.

Коллекторные двигатели могут работать как от сети переменного тока, так и от сети постоянного тока. Это обстоятельство послужило для присвоения им наименования универсальных коллекторных двигателей. Коллекторные двигатели широко при-меняются для привода швейных машин, пылесоса и т.д.

голоса
Рейтинг статьи
Читать еще:  Что за двигатель ej203 субару форестер
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector