3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Асинхронный двигатель при работе от ибп

Как использовать трехфазный асинхронный электродвигатель для работы от сети 220 В?

Известно много самых различных схем включения трехфазных двигателей для работы от однофазной сети. Наиболее распространенными из них являются две схемы.

Таблица 1. Характеристика пусковых сопротивлений из фехраля для трехфазных двигателей в однофазном режиме

Примечание. В скобках приведена шкала мощностей электродвигателей старой серии А и АО.

  • Если напряжение в однофазной сети 220 В, а в паспорте электродвигателя указаны напряжения 220/380 В и выходит шесть выводов обмоток, то двигатель включают по схеме рис. 1, а.
  • Емкость рабочего конденсатора для этой схемы при напряжении сети 220 В и частоте тока 50 Гц определяют по формуле:

где Pн — номинальная мощность электродвигателя, кВт.

Е сли двигатель при такой емкости не запускается, пусковой момент его увеличивают, подключая пусковой конденсатор. Емкость пускового конденсатора выбирают в 2,5-3,0 раза больше емкости рабочего конденсатора.
Рабочее напряжение выбранных конденсаторов должно быть больше напряжения сети в 1,15 раза.
В качестве рабочих применяют конденсаторы типов: МБГЧ (металлобумажный, герметизированный, частотный); КБГ-МН (конденсатор бумажный, герметизированный, в металлическом корпусе, нормальный); БГТ (бумажный, герметизированный, термостойкий) и др. В качестве пусковых применяют конденсаторы типа ЭП (электролитические пусковые) или таких же типов, как и рабочие. Пусковые конденсаторы после запуска двигателя отключают и разряжают.
Частота вращения трехфазного электродвигателя при включении его в однофазную сеть с применением конденсаторов по сравнению с частотой вращения двигателя при работе от трехфазной сети изменится незначительно.

Применение конденсаторов позволяет получить от трехфазного двигателя при питании от однофазной сети 65-70% его номинальной мощности, указанной в паспорте.

Наиболее легко осуществить включение трехфазного двигателя в однофазную сеть по схеме, приведенной на рис. 1. б.
Величину активного сопротивления, включаемого последовательно с обмоткой для получения наибольшего вращающего момента, определяют по формуле:

Для электродвигателей напряжением 220/380 В величину активных сопротивлений в зависимости от их мощности в трехфазном исполнении можно принимать приближенно по табл.1.
Материалом для изготовления активных сопротивлений служат фехраль, нихром, константан и т. п. Монтируют сопротивление на фарфоровом, керамическом или асбоцементном основании.
При выборе пусковых сопротивлений допустимые плотности тока принимают равными: 10 А/мм 2 — для проволок диаметром 0,1-0,5 мм; 8 А/мм 2 — для проволок диаметром более 1,5 мм.
В табл.1 в качестве примера приведены данные пусковых сопротивлений из фехраля.
Сопротивление Rn включают только на время запуска двигателя, а затем отключают.
Длительно развиваемая мощность трехфазного электродвигателя при питании от однофазной сети по приведенной схеме составляет 45-50% его мощности в трехфазном режиме.

Рис. 1 Схемы включения трехфазного асинхронного электродвигателя в однофазную сеть: а — при помощи емкости; б — при помощи сопротивления; Ср — рабочая емкость; Сп — пусковая емкость; Кн — кнопка пуска; Rn — активное пусковое сопротивление.

Добавить комментарий Отменить ответ

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Типовые схемы пуска синхронных электродвигателей

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

На сегодняшний день использование синхронных двигателей получило широкое распространение в сфере производства оборудования, работающего с постоянной скоростью, которое применяется в разных сферах человеческой деятельности. В связи с этим, существует несколько способов запуска синхронных электродвигателей, наиболее распространенные варианты которых будут представлены ниже.

Способы пуска синхронного электродвигателя

Способы пуска синхронного электродвигателя достаточно сложны, в этом заключается один из основных недостатков электродвигателей данного типа. Запуск синхронных электродвигателей осуществляется либо посредством воздействия вспомогательного пускового двигателя, либо с помощью асинхронного пуска. Рассмотрим каждый из способов в отдельности.

Асинхронный пуск синхронного электродвигателя

Асинхронный пуск синхронного электродвигателя предполагает расположение дополнительной короткозамкнутой обмотки в полюсных наконечниках полюсов ротора. Это необходимо, чтобы обеспечить во время пуска вывод чрезмерно большой Э.Д.С., образующейся в обмотке (1), что является возможным благодаря замыканию рубильника (2) на соединение (3). Благодаря тому, что магнитное поле, возникающее в результате включения напряжения трехфазной сети в обмотке статора (4), пересекает короткозамкнутую обмотку (пусковую обмотку), находящуюся в полюсных наконечниках ротора, индуктируются токи.

Действие этих токов в сочетании с вращающимся полем статора, запускают во вращение ротор, который постепенно набирает обороты. Достигнув 95-97% количества оборотов рубильник (2) ротора переходит в состояние, которое вынуждает обмотку ротора включить сеть постоянного напряжения.

Асинхронный пуск синхронного электродвигателя не лишен недостатков, точнее сказать, недостатка, которым является большой пусковой ток, который по значению может превышать в 7 раз рабочий ток. Столь высокое значение пускового тока является причиной падения напряжения в сети, что негативно сказывается на функционировании других потребителей энергии. Одним из наиболее распространенных вариантов решения упомянутого недостатка является использование автотрансформатора для понижения напряжения, а также использование тиристорных возбудителей для пуска синхронных электродвигателей, которые отличаются высоким К.П.Д. Именно высокое значение К.П.Д. во многом определило выбор тиристорных возбудителей в качестве комплектов большей части выпускаемых синхронных электродвигателей крупных размеров. К тому же, применение тиристорных возбудителей позволяет автоматизировать процесс подачи возбуждения синхронному двигателю. Автоматизация может быть реализована 2-мя способами: подача возбуждения синхронному двигателю в функции скорости и подача возбуждения синхронному двигателю в функции тока. При этом контроль подачи возбуждения синхронному двигателю в функции тока осуществляется с помощью реле тока.

На сегодняшний момент именно асинхронный пуск синхронных двигателей получил наибольшее распространение, так как его достаточно просто реализовать, а работает он крайне надежно.

Пуск синхронного двигателя при помощи вспомогательного двигателя

Пуск синхронного двигателя при помощи вспомогательного двигателя предполагает запуск синхронного электродвигателя благодаря работе другого двигателя, работа которого позволяет ротору синхронного двигателя развернуть полюса, осуществляя дальнейшее вращение совершенно самостоятельно. Чтобы запуск произошел, нужно создать условия, при которых количество пар полюсов асинхронного двигателя было бы меньше количества пар полюсов синхронного двигателя. Порядок запуска синхронного двигателя предполагает включение рубильника (3), пуск вспомогательного асинхронного двигателя (2), осуществляющего разворот ротора синхронного двигателя (1) до скорости, которая соответствует скорости поля статора. Далее включаются полюсы ротора после включения рубильника (4). При включении синхронного двигателя в сеть трехфазного тока, требуется синхронизация, осуществляемая реостатом (5). Реостат организует возбуждение, позволяющее установить напряжение обмотки статора, определяемое вольтметром V, равное напряжению в сети, которое указывает вольтметр V1.

При разомкнутом рубильнике лампы (6), расположенные параллельно ножам рубильника (7), буду мигать. По мере того, как будет меняться скорость ращения вспомогательного асинхронного двигателя, лампы будут постепенно начинать мигать все реже, пока все они не погаснут в раз. Это сигнал того, что синхронный двигатель пора включать в сеть трехфазного тока рубильником (7). Так как ротор двигателя далее может вращаться без помощи, то вспомогательный двигатель (2) пора отключать от сети посредством рубильника (3).

Читать еще:  Характеристики двигателя мотоцикла минска

Это сложная процедура, являющаяся самым главным недостатком такого варианта асинхронного электродвигателя, что определяет крайне редкие случаи ее практической реализации.

ИБП не работает от генератора? Есть решение!

Публикуем еще одну статью о практическом применении наших инверторных стабилизаторов. В этот раз речь пойдет о модели IS1106RT.

Покупатель и пользователь Александр Пырсов рассказал нам о том, как данное устройство работает в серверном помещении и помогает стабилизировать процесс перехода электропитания на бензиновый генератор.

Александр, для чего вы приобрели стабилизатор напряжения IS1106RT, какие задачи требовалось решить?

Наша организация находится в районе со старым жилым фондом, и, видимо, из-за несовременного оборудования на подстанциях, довольно часто попадает под отключение электроэнергии.

Мы являемся головным подразделением для 7 филиалов, поэтому большинство сетевых сервисов располагается на оборудовании, размещённом в нашем серверном помещении. Его общее энергопотребление составляет 1,5 кВт. Обеспечение бесперебойного функционирования этого оборудования является обязательным условием, так как простои и внезапные отключения очень негативно сказываются на рабочем процессе всей организации.

Почему не удавалось организовать качественное электропитание вашей серверной?

При отключении электроэнергии питание серверной у нас осуществляется от резервного источника – бензинового генератора на 5 кВт, который автоматически включается при пропадании напряжения в основной сети. В промежуток времени, необходимый для запуска генератора, поддержка работоспособности серверного оборудования осуществляется за счет подключенного после генератора источника бесперебойного питания линейно-интерактивно типа.

Но, как выяснилось на практике, функционирует такая схема крайне нестабильно. Дело в том, что линейно-интерактивные ИБП и генератор не любят работать в одной связке. Я испробовал несколько моделей и везде картина одинакова: после запуска генератор, сопряженный с ИБП, начинает прыгать, как сумасшедший, то повышая, то понижая обороты и выдавая, соответственно, то 180, то 300 В. ИБП, в свою очередь, признает такое напряжение нерабочим и переключается на батареи. После этого генератор успокаивается и выдает ровное напряжение. ИБП видит допустимое входное напряжение и переключается с батарей обратно на генератор, что снова приводит к скачкам напряжения. В итоге ситуация повторяется и зацикливается.

Комментарий инженера ГК «Штиль»

Действительно, проблема совместной работы ИБП и генератора с двигателем внутреннего сгорания довольно распространена. Всё дело в том, что классический корректор входного коэффициента мощности (ККМ), применяемый в большинстве современных источников бесперебойного питания, может входить в резонанс с генератором, что приводит к описываемой Александром ситуации.

На практике влияние ККМ ИБП на генератор снижают либо путём подбора генератора с мощностью, значительно превышающей мощность ИБП, что достаточно затратно с экономической точки зрения, либо путём подключения дополнительной нагрузки к выходу генератора, что увеличивает расход топлива и не всегда удобно.

В оборудовании, выпускаемом компанией «Штиль», эта проблема решена за счет инновационного алгоритма работы ККМ, позволяющего нашим инверторным стабилизаторам и ИБП работать в единой связке практически с любым современным генератором.

Как вы пытались исправить ситуацию?

Несколько раз я попадал на моменты, когда ИБП и генератор синхронизировались и работали нормально, но это скорее исключение – где-то 1 раз из 10. Количество синхронизаций удалось немного увеличить, установив между генератором и ИБП релейный стабилизатор на 5 кВт, но периодически он отключался даже раньше, чем ИБП переходил в автономный режим.

Пока мы не поставили инверторный стабилизатор «Штиль», проблема решалась подключением к генератору дополнительной статической нагрузки на 0,7 кВт – старой электрической плитки. Эта нагрузка, как бы смешно она не выглядела со стороны, способствовала синхронизации генератора и ИБП.

Почему решили выбрать именно инверторный стабилизатор напряжения от ГК «Штиль»?

Во-первых, мне понравились хорошие отзывы об оборудовании. Во-вторых, я уже столько насмотрелся на продукцию Китая, что решил попробовать наше – российское. У нас никогда не экономили на толщине проводов и качестве пайки. Да и цена у модели была выгоднее зарубежных аналогов. Кроме того, имелась плата для удаленного администрирования с поддержкой протокола SNMP. Все это и склонило чашу весов при выборе стабилизатора напряжения в пользу продукции «Штиль».

Были ли какие-нибудь трудности при подключении стабилизатора?

Сложностей никаких не было. В нашей серверной простая схема подключения. Электропитание из города приходит в распределительный электрощит. Затем кабель уходит к генератору с блоком автоматического пуска. При пропадании напряжения в сети он автоматически включается и подает электричество на стабилизатор напряжения, затем питание поступает на ИБП и возвращается в щиток, с которого уже разводится по нагрузке – в стойки с оборудованием серверной.

К сети и нагрузке стабилизатор подключается через клеммную колодку. Самое главное тут завести провод в соответствующую ему клемму, и тогда проблем не будет.

Прибор мы приобрели вместе с платой для мониторинга работы по веб-интерфейсу. Плата легко вставляется в слот на задней панели стабилизатора. Затем установил программу «Shtyl device manager», чтобы отслеживать работу устройства на ПК.

Система удаленного мониторинга отображает на ПК каждый параметр сети. От генератора на нагрузку идет стабильное напряжение без всяких скачков. Теперь связка приборов, обеспечивающих бесперебойное электропитания работает просто отлично.

Хочется отметить поворотную панель управления. При установке стабилизатора в стойку, она оказалась очень полезным решением.

Новый стабилизатор выравнивает выходное напряжение генератора, что благоприятно влияет и на ИБП, и на сам генератор, который теперь работает без скачков, чего раньше никогда не было. А в серверной – спокойствие, ничего не щелкает и не пищит. Это можно посмотреть в моих видеороликах:

9.7 ОСОБЕННОСТИ ЗАЩИТЫ СИНХРОННЫХ ДВИГАТЕЛЕЙ

Прирассмотрении РЗ синхронных электродвигателей необходимо учитыватьихособенности:

Пуск большинства синхронных электродвигателей производится при отсутствии возбуждения прямым включением в сеть. Для этой цели на роторе синхронного электродвигателя предусматривается дополнительная короткозамкнутая обмотка, выполняющая во время пуска ту же роль, что и в короткозамкнутом роторе асинхронного электродвигателя. Когда скольжение электродвигателя приближается к нулю, включается возбуждение, и электродвигатель втягивается в синхронизм под влиянием появляющегося при этомсинхронного момента.

Во время пуска синхронный электродвигатель потребляет из сети повышенный ток, который по мереуменьшенияскольжения затухает, так же как и у асинхронного электродвигателя.

Для уменьшения понижения напряжения и пусковых токов мощные синхронные электродвигатели пускаются через реактор, который затем шунтируется. Защиты синхронных электродвигателей, как и РЗ асинхронных электродвигателей, должны быть отстроены от токов, возникающих при их пуске или самозапуске, имеющем место при восстановлении напряжениявсети.

Момент синхронного электродвигателя зависит от напряжения сети U д , ЭДС электродвигателя E d и угла сдвига δ между U д и E d . Безучетапотерьвстатореироторе

M д = U д E d sin δ X d

X d – синхронное сопротивление двигателя.

При постоянных значениях U д и E d каждой нагрузке электродвигателя соответствует определенное значение угла δ . В случае понижения напряжения в сети, как следует из выражения (9.14), момент М д

Читать еще:  Что можно сделать с механическим двигателем

уменьшается. Если при этом он окажется меньше момента сопротивления М с механизма, то устойчивая работа синхронного электродвигателя нарушается, возникают качания и электродвигатель выходит из синхронизма. Нарушение устойчивости возможно также при перегрузке электродвигателя (увеличение δ ) или снижении возбуждения (уменьшение E d ).

Эффективным средством повышения устойчивости электродвигателя является форсировка возбуждения, увеличивающая его ЭДС. Опыт показывает, что при глубоких понижениях напряжения (до нуля) синхронные электродвигатели, работающие с номинальной нагрузкой, выходят из синхронизма, если перерыв питания превосходит 0,5 с.

При нарушении синхронизма частота вращения электродвигателя уменьшается, и он переходит в асинхронный режим. При этом в пусковой обмотке и цепи ротора появляются токи, создающие дополнительный асинхронный момент, под влиянием которого синхронный электродвигатель может остаться в работе с некоторым скольжением.

Токи, появляющиеся в статоре, роторе и пусковой обмотке электродвигателя при асинхронном режиме, вызывают повышенный нагрев их, поэтому длительная работа синхронных электродвигателей в асинхронном режиме с нагрузкой более 0,4-0,5 номинальной недопустима.

В связи с этим, появляется необходимость в специальной РЗ от асинхронного режима, которая должна реализовать мероприятия, обеспечивающие ресинхронизацию электродвигателя, или отключить его. Ресинхронизация состоит в том, что с электродвигателя снимается возбуждение (при этом его асинхронный момент повышается и скольжение уменьшается), через некоторое время включается возбуждение, и электродвигатель вновь втягивается в синхронизм. Признаком нарушения синхронизма электродвигателя является появление колебаний тока в статоре и переменного тока в роторе.

Исследования и опыт эксплуатации показывают, что после отключения КЗ или включения резервного источника питания многие синхронные электродвигатели могут самозапускаться, т. е. вновь (сами) втягиваться в синхронизм. Самозапуск синхронных электродвигателей возможен, если после восстановления напряжения под влиянием возросшего асинхронного момента скольжение электродвигателя настолько уменьшится, что онсможетснова втянутьсяв синхронизм.

Защиты, применяемые на синхронных электродвигателях

На синхронных электродвигателях устанавливаются следующие РЗ: от междуфазных повреждений в статоре; от замыканий обмотки статора на землю; от перегрузки; от асинхронного хода; от понижения напряжения в сети.

Защита от междуфазных повреждений выполняется мгновенной в виде токовой отсечки или продольной дифференциальной защиты по такой же схеме, как у асинхронных электродвигателей. Отличие заключается в том, что РЗ синхронного электродвигателя одновременно с выключателем отключает АГП. При применении тиристорного возбуждения и отсутствии АГП защита действует на инвертирование возбудителя. Ток срабатывания отсечки отстраивается от пусковых токов и токов самозапуска электродвигателя. Крупные электродвигатели оборудуются продольной дифференциальной РЗ в двухфазном исполнении. Защита от замыканий обмотки статора на землю применяется при токах замыкания на землю более 5 -10 А. Защита от перегрузки обычно выполняется совмещенной с РЗ от асинхронного хода (см. рис.9.11).

Асинхронные двигатели: принципы эффективного управления

Значение асинхронных двигателей на любом производстве переоценить невозможно. Они обеспечивают функционирование оборудования, совершенно различного по мощности (от вентиляторов камер до дробилок), режиму работы (питающие насосы работают без остановки, а насосные станции пожаротушения могут почти не включаться) и требованиям к безопасности (взрывозащищенное и искробезопасное исполнение позволяют использовать асинхронные двигатели во взрывоопасных производственных зонах). Двигатели переменного тока с короткозамкнутым ротором отличаются простотой конструкции, невысокой стоимостью и являются самыми распространенными электрическими машинами. Согласно экспертным оценкам асинхронные двигатели потребляют до 53% всей вырабатываемой энергии.

Управление асинхронными двигателями определяется спецификой применения и требованиями к работе оборудования. Так, двигатель вентилятора должен включаться по сигналу от термодатчика, насосный двигатель — изменять скорость вращения для поддержания давления, а двигатель в составе систем, оборудованных запорно-регулирующей арматурой, — обеспечивать работу установки и контроль за состоянием арматуры. Чем выше требования к управляемому оборудованию, тем сложнее схема управления двигателем и конструкция шкафа управления.

Одно из распространенных применений асинхронных двигателей — насосы и насосные станции, активно используемые в производствах, где требуется перекачивание рабочих жидкостей, и решающие важные технологические задачи. Надежность и экономичность насосных установок серьезно влияют на показатели эффективности производства, и в свою очередь зависят от качества управления их работой. Как выбрать оптимальную схему управления для двигателей насосов и насосных станций, говорим сегодня.

Прежде всего, надо понять, как можно запускать двигатели и управлять ими. Условно по способам управления их можно разделить на три вида:

  • прямой пуск и работа двигателя с постоянной производительностью;
  • использование устройств плавного пуска (УПП) для разгона и дальнейшая работа двигателя с постоянной производительностью;
  • использование преобразователей частоты (частотно-регулируемых приводов — ЧРП) для оптимального разгона и изменения производительности в зависимости от условий работы.

Рассмотрим каждый из способов.

Прямой пуск

Прямой пуск применяется в основном для маломощных двигателей — простой и надежный способ.

Для двигателей средней и большой мощности с тяжелыми условиями запуска необходимо ограничивать пусковой ток, поэтому для них используют пуск по схеме «звезда-треугольник».

При схеме «звезда–треугольник» двигатель должен быть таким, чтобы номинальное напряжение питания при включении его обмоток «треугольником» было 380 В. В этом случае двигатель запуска ется в два шага. На шаге разгона обмотки включаются «звездой».

Таким образом, получается, что 380 В подается на схему, которая для нормальной работы требует напряжения около 660 В. Так как двигатель в «звезде» работает при пониженном напряжении, разгон (выход на рабочие обороты) получается относительно плавным.

На втором шаге обмотки включаются «треугольником», и двигатель выходит на свою номинальную мощность. Минус этого способа — разгон получается ступенчатым, а пусковые токи все же могут принимать большое значение в сравнении с пуском от УПП или ЧРП.

Подключение двигателей по схеме «звезда» и «треугольник»

Использование устройств плавного пуска

На электроприводе насосных агрегатов при пуске с повышенным моментом и резкой остановке насосных установок в сети возникают гидравлические удары, которые могут повредить запорно-регулирующую арматуру, контрольно-измерительные приборы, трубопровод. Плавный пуск и остановка агрегатов позволяет избежать этих проблем, обеспечить это может устройство плавного пуска (УПП). Устанавливать УПП следует на двигателях средней и большой мощности. Но надо помнить, что устройства в лучшем случае снижают пусковой ток в 2,5 раза.

При более высоких требованиях к пусковым токам двигателей и/или наличии переменной нагрузки необходимо использовать преобразователь частоты.

Использование преобразователей частоты

Насосная станция из четырех насосов

Преобразователь частоты, помимо преимуществ УПП, обладает еще рядом полезных возможностей:

1. Каскадный режим работы. При запуске частотный преобразователь регулирует сначала двигатель одного насоса, пытаясь достичь заданного давления. Если производительности первого насоса не хватает, то ЧРП, управляя контакторами двигателей, отключает двигатель первого насоса от преобразователя, затем немедленно подключает его к сети и работает на полную мощность. В то же время, включается контактор, питающий второй насос от преобразователя частоты. Сам преобразователь частоты начинает отрабатывать пуск двигателя: выполняется плавная раскрутка и вход в режим регулирования. Таким образом, суммируя мощности двигателей, получаем широкий диапазон регулирования параметров системы.

Читать еще:  Чем опасна порванная подушка двигателя

2. Рассмотренная схема позволяет подключать три, четыре и более насосов, без использования внешних логических контроллеров.

3. Возможность использования схем с переключением насосов. Это помогает уменьшить износ оборудования и выполнять одинаковую наработку часов оборудования. Кроме того, схема с переключением насосов легко позволяет вводить аварийный резерв, так как все насосы постоянно находятся в рабочем и готовом состоянии.

Использование частотно регулируемых приводов — это наиболее совершенное техническое решение настоящего времени. Поэтому они активно внедряются как при новом строительстве промышленных объектов, так и при реконструкции существующего производства. Последнее особенно актуально для нашей страны, так как оборудование многих производств устарело и требует замены двигателей или их модернизации посредством установки ЧРП.

Как правило, установка ЧРП себя оправдывает, тем не менее его выбор к применению должен быть обоснован, так как цена ЧРП может превышать стоимость самого двигателя в разы.

Как и любая другая электроустановка, двигатель требует выполнения защиты. Различают несколько видов защит.

Внешняя защита

Как правило, внешняя совмещает в себе защиту от короткого замыкания и перегрузки по току. Реализуют её, в основном, на специальных автоматах защиты электродвигателя или контакторах с тепловым реле. Основное преимущество этих аппаратов заключается в точной настройке теплового расцепителя, что позволяет уберечь двигатель при заклинивании подшипника, при перегрузке механизма в целом с дальнейшим ростом токов. Использование обычных автоматических выключателей нежелательно.

Что касается преобразователей частоты, то согласно рекомендациям многих заводов-производителей защищать их по току следует быстродействующими предохранителями. Но такое решение не всегда удобно, поэтому допускается защищать ЧРП автоматическим выключателем. Важно правильно подобрать его номинальные значения в соответствии с UL 508, параграф 45.8.4, часть «а»: для трехфазных приводов номинальный ток автоматического выключателя должен быть 1,6-2,6 кратным к входному току преобразователя частоты, это связано с длительным увеличением тока до 160 % от номинального во время разгона двигателя.

Внутренняя защита

Внутренней защитой выступает тепловая защита двигателя. Реализуется с помощью теплового датчика — термистора, встраиваемого в обмотки статора двигателя. В этом случае в шкаф управления потребуется установка дополнительного реле, которое будет контролировать состояние теплового датчика и в случае недопустимого перегрева воздействовать на аппарат управления двигателя и отключать его. Если двигатель управляется от ЧРП, то сигнал от терморезистора РТС можно завести на аналоговый вход ЧРП с заданием уставки срабатывания. Также в роли тепловой защиты могут выступать биметаллические пластины, устанавливаемые в двигатели. Своим контактом она разрывает цепь управления и останавливает двигатель.

Шкафы управления насосами

Дополнительные защиты

В роли дополнительной защиты может выступать датчик сухого хода. В тех системах, где используется насос с «мокрым» ротором, и его работа не допускается без рабочей среды — устанавливают датчик «сухого хода». Его работа реализуется с помощью реле протока и реле времени, которое позволяет совершить пуск пока рабочая среда не начнет двигаться и не включит реле протока.

Защита минимального напряжения (ЗМН). При возникновении КЗ на линии, отходящей от шин РП, происходит снижение напряжения. Возникает самозапуск всех двигателей, подключенных к РП, тем самым усугубляя ситуацию. При снижении напряжения ниже 55-65 % от номинального напряжения, самозапуск может не произойти. Для того, чтобы дать возможность самозапуститься ответственным двигателям, ЗМН отключает неответственные двигатели.

Как правило, реализуется это при помощи реле контроля фаз. Соответственно, схема управления контактором должна осуществляться при помощи реле с фиксацией команд управления.

Схема управления. Полезные советы

При выборе оптимальной схемы управления необходимо обратить внимание на ряд немаловажных моментов:

  1. Оперативное питание вторичных цепей управления лучше всего осуществлять по отдельной линии от источника бесперебойного питания. Но такая возможность есть не всегда, и тогда оперативное питание надо брать непосредственно от силового ввода питания в шкаф.
  2. При наличии возможности управления двигателем из нескольких мест (местное, дистанционное) обычно устанавливается переключатель, дающий возможность управлять из того или иного места. В таких случаях схему строить следует таким образом, чтобы команда на отключение выполнялась в любом случае, вне зависимости от положения переключателя режимами управления.
  3. Шкафы управления, оборудованные ЧРП, обязательно должны иметь активную вентиляцию. Приточный вентилятор лучше располагать в нижней части шкафа, а вытяжную решетку в верхней. Приток воздуха создает внутри избыточное давление чистого воздуха и предотвращает попадание грязного через возможные дефекты корпуса. Если шкафов будет несколько, и они будут располагаться в один ряд, то вентилятор и решетку надо располагать на дверце. Мощность вентилятора должна выбираться исходя из тепловыделения ЧРП. Следует отметить, что заводские характеристики вентилятора даются для свободного потока воздуха, при установке фильтра производительность падает на 25-30 %, также производительность будет падать по мере засорения фильтра, поэтому необходимо делать соответствующий запас при выборе вентилятора.
  4. Не стоит забывать, что в некоторых случаях требуется амперметр, показывающий ток двигателя, и преобразователь для передачи данных в АСУ ТП.
  5. Во многих случаях требуется передача данных в АСУ ТП, поэтому необходимо предусмотреть дополнительные клеммы для подключения аналоговых входов/выходов ЧРП и датчиков, сухих контактов реле и контактора, аварийных контактов срабатывания защит и пр.
  6. При работе насосного агрегата может возникнуть неисправность или аварийная ситуация, поломка насоса или двигателя, отклонения параметров работы от нормы, опасная для персонала ситуация. В таком случае требуется экстренное отключение установки, для чего необходимо предусмотреть аварийную кнопку. Таких кнопок может быть несколько: на самом щите управления и непосредственно у насоса. Лучше, чтобы это была красная кнопка-грибок.

Дополнительная сложность в организации управления асинхронными двигателями обусловлена тем, что большинство представленных на рынке шкафов управления — это готовые универсальные решения, при построении которых не учитываются индивидуальные особенности производственного цикла, особенности подключаемых двигателей, требования, предъявляемые к надежности аппаратуры со стороны Заказчика, а также принцип «подобия», предполагающий максимальное приближение готового изделия к уже установленным на объекте шкафам. Поэтому в процессе монтажа и наладки приходится в большинстве случаев вносить множество изменений, что повышает риски поломки оборудования и увеличивает уровень ответственности подрядчика и требования к квалификации специалистов-наладчиков.

Компоновочные решения при проектировании шкафов управления насосами

Вообще, учитывая масштаб задач, которые решаются с применением асинхронных двигателей, и стоимость оборудования в случае применения ЧРП или УПП, первое, в чем следует убедиться при выборе поставщика оборудования для управления двигателем, — это компетенция исполнителя. Неважно, с кем вы работаете — производителем или интегратором — главное, чтобы ваш партнер смог обеспечить квалифицированную поддержку, подобрать нужный способ управления с учетом требований производства, а также выстроить надежную системы защиты.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector